Mei Lan Tan
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mei Lan Tan.
Pharmaceutical Research | 2009
Mei Lan Tan; Jer Ping Ooi; Nawfal I Ismail; Ahmed Ismail Hassan Moad; Tengku Sifzizul Tengku Muhammad
Apoptosis and autophagic cell deaths are programmed cell deaths and they play essential roles in cell survival, growth and development and tumorigenesis. The huge increase of publications in both apoptosis and autophagic signaling pathways has contributed to the wealth of knowledge in facilitating the understanding of cancer pathogenesis. Deciphering the molecular pathways and molecules involved in these pathways has helped scientists devise and develop targeted strategies against cancer. Various drugs targeting the apoptotic TRAIL, Bcl-2 and proteasome pathways are already in Phase II/III clinical trials. The first mTOR inhibitor, temsirolimus has already been approved by the FDA, USA for the treatment of advanced renal cell carcinoma and more mTOR inhibitors are expected to be in the market in a few years time. Strategizing against aberrant autophagy activities in various cancers by using either pro-autophagics or autophagy inhibitors are currently been investigated. This review aims to discuss the most recent antitumor strategies targeting the apoptosis and autophagy signaling pathways and the latest outcome of clinical trials of the above drugs.
Journal of Ethnopharmacology | 2011
Kheng Leong Ooi; Tengku Sifzizul Tengku Muhammad; Mei Lan Tan; Shaida Fariza Sulaiman
ETHNOPHARMACOLOGICAL RELEVANCE The decoction of the whole plant of Elephantopus mollis Kunth. is traditionally consumed to treat various free radical-mediated diseases including cancer and diabetes. AIM OF THE STUDY This study was initiated to determine whether the most effective antioxidant compound isolated from the whole plant of Elephantopus mollis can also contribute to its claimed traditional values as anticancer and antidiabetes agents. MATERIALS AND METHODS An active antiradical phenolic compound (3,4-di-O-caffeoyl quinic acid) was isolated from the methanol extract (with the highest in polyphenolic content) and their antioxidant activities were compared using four different assays, that are DPPH, FRAP, metal chelating, and β-carotene bleaching tests. The compound was also evaluated for its cytotoxic activity, apoptotic induction and anti-glucosidase efficacies using methylene blue, DeadEnd™ assay and α-glucosidase assays, respectively. RESULTS The compound acted as a greater primary antioxidant than its methanol extract, by having higher ferric reducing activity (EC(50) 2.18±0.05 μg/ml), β-carotene bleaching activity (EC(50) 23.85±0.65 μg/ml) and DPPH scavenging activity (EC(50) 68.91±5.44μg/ml), whereas the methanol extract exhibited higher secondary antioxidant activity as a metal chelator with lower EC(50) value (49.39±3.68 μg/ml) than the compound. Cytotoxicity screening of this compound exhibited a remarkable dose-dependent inhibitory effect on NCI-H23 (human lung adenocarcinoma) cell lines (EC(50) 3.26±0.35 μg/ml) and was found to be apoptotic in nature based on a clear indication of DNA fragmentation. This compound also displayed a concentration-dependent α-glucosidase inhibition with EC(50) 241.80±14.29 μg/ml. CONCLUSIONS The findings indicate the major role of 3,4-di-O-caffeoyl quinic acid to antioxidant capacities of Elephantopus mollis extracts. The compound also exerted apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects and is thus a promising non toxic agent in treating cancer and type 2 diabetes mellitus.
Life Sciences | 2011
Jer Ping Ooi; Masanori Kuroyanagi; Shaida Fariza Sulaiman; Tengku Sifzizul Tengku Muhammad; Mei Lan Tan
AIMS Cytochrome P450 (CYP) enzymes have been implicated in a large number of preventable drug-herb interactions. Andrographis paniculata Nees, a tropical herb widely used for various health conditions contains two major diterpenoids, andrographolide and 14-Deoxy-11, 12-Didehydroandrographolide. These compounds were evaluated systematically for their effects on CYP1A2, CYP2D6 and CYP3A4 expressions in HepG2 cells. MAIN METHODS Quantitative RT-PCR and Western blot analysis were used to assess the mRNA and protein expression of the three CYPs. CYP3A4 enzyme activity was evaluated using P450-Glo™ Assays. The LanthaScreen® TR-FRET PXR (SXR) Competitive Binding Assay was used to determine if the compounds are potential PXR-ligands. KEY FINDINGS Both diterpenoids inhibited the mRNA and protein expressions of CYP1A2, CYP2D6, and CYP3A4. Interestingly, the lowest concentration of both diterpenoids produced a more than 50% reduction in the mRNA and protein expression of CYP3A4 and this reduction was consistent with the enzyme activity. Further experiments revealed that both diterpenoids were also capable of attenuating the ability of dexamethasone to induce CYP3A4 expression, and 14-Deoxy-11, 12-Didehydroandrographolide tended to bind to the PXR-LBD site in a concentration-dependent manner. SIGNIFICANCE These diterpenoids are potential CYP3A4 inhibitors and the effects on CYP3A4 may be clinically significant. 14-Deoxy-11, 12-Didehydroandrographolide inhibits CYP3A4 by binding and antagonizing PXR function.
Journal of Clinical Laboratory Analysis | 2009
Ekhlas Qaid Gazem Othman; Gurjeet Kaur; Ahmad Faisal Mutee; Tengku Sifzizul Tengku Muhammad; Mei Lan Tan
Autophagy is a protein degradation process within the cell and its deregulation has been linked to various diseases and the formation of cancer. One of the important proteins involved in the autophagy process is microtubule‐associated protein 1 light chain 3 (MAP1LC3). The aims of this study were to determine the MAP1LC3A and MAP1LC3B protein expression in both normal and cancer breast tissues and to determine the relationship between the expression of these proteins and type of tissues. Immunohistochemistry assessments were carried out on tissue microarrays consisting of breast tissues. MAP1LC3A expression was detected in 52/56 of normal breast tissue cores and 65/67 of breast cancer tissue cores. MAP1LC3B expression was detected in 55/56 of normal breast tissue cores and 67/67 of breast cancer tissue cores. MAP1LC3A and MAP1LC3B protein are expressed in the majority of normal and cancer breast tissues. A large number of MAP1LC3A and MAP1LC3B positive breast cancer tissues cores have high proportion of stained cells (81–100%) as compared with normal breast tissues. However, a significantly higher number of breast cancer tissues were found to express the MAP1LC3A protein with strong immunoreactivity as compared with the normal tissues, suggesting that MAP1LC3A may play a role in breast cancer development. J. Clin. Lab. Anal. 23:249–258, 2009.
PLOS ONE | 2014
Jun Lu; Heming Wei; Jianjun Wu; Mohd Fadzly Amar Jamil; Mei Lan Tan; Mohd Ilham Adenan; Philip Wong; Winston Shim
Introduction Mitragynine is a major bioactive compound of Kratom, which is derived from the leave extracts of Mitragyna speciosa Korth or Mitragyna speciosa (M. speciosa), a medicinal plant from South East Asia used legally in many countries as stimulant with opioid-like effects for the treatment of chronic pain and opioid-withdrawal symptoms. Fatal incidents with Mitragynine have been associated with cardiac arrest. In this study, we determined the cardiotoxicity of Mitragynine and other chemical constituents isolated using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Methods and Results The rapid delayed rectifier potassium current (I Kr), L-type Ca2+ current (I Ca,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant I Kr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed I Kr in hiPSC-CMs by 67% ∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression,and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine. Conclusions Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of I Kr in human cardiomyocytes.
Food Science and Nutrition | 2014
Xue Fen Koe; Tengku Sifzizul Tengku Muhammad; Alexander Chong; Habibah A. Wahab; Mei Lan Tan
A multiplex RT-qPCR was developed to examine CYP1A2, CYP2D6, and CYP3A4 induction properties of compounds from food and herbal sources. The induction of drug metabolizing enzymes is an important pharmacokinetic interaction with unique features in comparison with inhibition of metabolizing enzymes. Cytochrome induction can lead to serious drug–drug or drug–food interactions, especially if the coadministered drug plasma level is critical as it can reduce therapeutic effects and cause complications. Using this optimized multiplex RT-qPCR, cytochrome induction properties of andrographolide, curcumin, lycopene, bergamottin, and resveratrol were determined. Andrographolide, curcumin, and lycopene produced no significant induction effects on CYP1A2, CYP2D6, and CYP3A4. However, bergamottin appeared to be a significant in vitro CYP1A2 inducer starting from 5 to 50 μmol/L with induction ranging from 60 to 100-fold changes. On the other hand, resveratrol is a weak in vitro CYP1A2 inducer. Examining the cytochrome induction properties of food and herbal compounds help complement CYP inhibition studies and provide labeling and safety caution for such products.
Cell Biochemistry and Biophysics | 2013
Ahmed Ismail Hassan Moad; Tengku Sifzizul Tengku Muhammad; Chern Ein Oon; Mei Lan Tan
Autophagy is an evolutionarily conserved lysosomal degradation pathway and plays a critical role in the homeostatic process of recycling proteins and organelles. Functional relationships have been described between apoptosis and autophagy. Perturbations in the apoptotic machinery have been reported to induce autophagic cell deaths. Inhibition of autophagy in cancer cells has resulted in cell deaths that manifested hallmarks of apoptosis. However, the molecular relationships and the circumstances of which molecular pathways dictate the choice between apoptosis and autophagy are currently unknown. This study aims to identify specific gene expression of rapamycin-induced autophagy and the effects of rapamycin when the autophagy process is inhibited. In this study, we have demonstrated that rapamycin is capable of inducing autophagy in T-47D breast carcinoma cells. However, when the autophagy process was inhibited by 3-MA, the effects of rapamycin became apoptotic. The Phlda1 gene was found to be up-regulated in both autophagy and apoptosis and silencing this gene was found to reduce both activities, strongly suggests that Phlda1 mediates and positively regulates both autophagy and apoptosis pathways.
Toxicology in Vitro | 2013
Ee Lin Lim; Tiong Chai Seah; Xue Fen Koe; Habibah A. Wahab; Mohd Ilham Adenan; Mohd Fadzly Amar Jamil; Mohamed Isa Abdul Majid; Mei Lan Tan
CYP450 enzymes are key determinants in drug toxicities, reduced pharmacological effect and adverse drug reactions. Mitragynine, an euphoric compound was evaluated for its effects on the expression of mRNAs encoding CYP1A2, CYP2D6 and CYP3A4 and protein expression and resultant enzymatic activity. The mRNA and protein expression of CYP450 isoforms were carried out using an optimized multiplex qRT-PCR assay and Western blot analysis. CYP1A2 and CYP3A4 enzyme activities were evaluated using P450-Glo™ assays. The effects of mitragynine on human CYP3A4 protein expression were determined using an optimized hCYP3A4-HepG2 cell-based assay. An in silico computational method to predict the binding conformation of mitragynine to the active site of the CYP3A4 enzyme was performed and further validated using in vitro CYP3A4 inhibition assays. Mitragynine was found to induce mRNA and protein expression of CYP1A2. For the highest concentration of 25 μM, induction of mRNA was approximately 70% that of the positive control and was consistent with the increased CYP1A2 enzymatic activity. Thus, mitragynine is a significant in vitro CYP1A2 inducer. However, it appeared to be a weak CYP3A4 inducer at the transcriptional level and a weak CYP3A4 enzyme inhibitor. It is therefore, unlikely to have any significant clinical effects on CYP3A4 activity.
Food and Chemical Toxicology | 2012
Mei Lan Tan; Heng Kean Tan; Chern Ein Oon; Masanori Kuroyanagi; Tengku Sifzizul Tengku Muhammad
14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.
Journal of Ethnopharmacology | 2015
Kheng Leong Ooi; Suh In Loh; Mei Lan Tan; Tengku Sifzizul Tengku Muhammad; Shaida Fariza Sulaiman
ETHNOPHARMACOLOGICAL RELEVANCE The juice of the entire fresh herb and infusion of dried sample of Murdannia bracteata are consumed to treat liver cancer and diabetes in Malaysia. However, no scientific evidence of these bioactivities has been reported. MATERIALS AND METHODS To verify the therapeutic potentials of sequential extracts and infusion of this plant by determining its cytotoxicity against human liver carcinoma HepG2 cells and α-glucosidase inhibitory activity. The cytotoxic activities of the extracts against HepG2 were determined using a methylene blue assay, and an α-glucosidase inhibitory assay was used to assess anti-diabetic activity. The molecular basis of the anti-hepatocellular carcinoma activity of the most active extract was determined using RT-PCR. Chemical profiling of the most active extract was performed using GC-MS and UPLC analyses. RESULTS The results obtained from the cytotoxic screening revealed the dose-dependent growth inhibition of the HepG2 cells by only the hexane extract, with an EC50 value of 37.17±1.00 µg/ml. The HepG2 cell death was found to be apoptotic in nature and based on the significant biphasic induction of caspase-3, suggesting that the extract inhibited cell growth through a caspase-3-dependent pathway. The hexane extract also displayed α-glucosidase inhibitory activity, with an EC50 of 117.04±2.34 µg/ml. GC-MS analysis revealed that α-tocopherol was the major volatile compound in the hexane extract, and two phenolics (apigenin and caffeic acid derivatives) were detected using UPLC. CONCLUSIONS Based on various published reports, it could be suggested that α-tocopherol and apigenin derivatives might be involved in the apoptosis-based cytotoxicity of the active extract of this plant against HepG2 carcinoma cells. The effects of this plant in the treatment of diabetes can be related to the presence of α-glucosidase inhibitors, such as the caffeic acid derivative identified in the active extract.