Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mei Shao is active.

Publication


Featured researches published by Mei Shao.


Neuroscience | 2004

Spontaneous synaptic activity in chick vestibular nucleus neurons during the perinatal period

Mei Shao; J.C. Hirsch; Christian Giaume; Kenna D. Peusner

The principal cells of the chick tangential nucleus are second-order vestibular neurons involved in the vestibuloocular and vestibulocollic reflexes. The spontaneous synaptic activity of morphologically identified principal cells was characterized in brain slices from 1-day-old hatchlings (H1) using whole-cell voltage-clamp recordings and Cs-gluconate pipet solution. The frequency was 1.45 Hz for spontaneous excitatory postsynaptic currents (sEPSCs) and 1.47 Hz for spontaneous inhibitory postsynaptic currents (sIPSCs). Using specific neurotransmitter receptor antagonists, all of the sEPSCs were identified as AMPA receptor-mediated events, whereas 56% of the sIPSCs were glycine and 44% were GABA(A) receptor-mediated events. On exposure to TTX, the frequency of EPSCs decreased by 68%, while the frequency of IPSCs decreased by 33%, indicating greater EPSC dependency on presynaptic action potentials. These data on spontaneous synaptic activity at H1 were compared with those obtained in previous studies of 16-day old embryos (E16). After birth, the spontaneous synaptic activity exhibited increased EPSC frequency, increased ratio for excitatory to inhibitory events, increased percentage of TTX-dependent EPSCs, and faster kinetics. In addition, the ratio for glycine/GABA receptor-mediated events increased significantly. Altogether, these data indicate that at hatching spontaneous synaptic activity of vestibular nucleus neurons in brain slices of the chick tangential nucleus undergoes appreciable changes, with increased frequency of EPSCs and glycinergic activity playing more important roles compared with the late-term chick embryo when GABAergic activity prevailed. The definition of this developmental pattern of synaptic activity in vestibular nucleus neurons should contribute to understanding how vestibular reflex activity is established in the hatchling chick.


Neuroscience | 2006

Maturation of firing pattern in chick vestibular nucleus neurons

Mei Shao; J.C. Hirsch; Kenna D. Peusner

The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when <20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials.


Frontiers in Neurology | 2012

Basic concepts in understanding recovery of function in vestibular reflex networks during vestibular compensation

Kenna D. Peusner; Mei Shao; Rebecca Reddaway; June C. Hirsch

Unilateral peripheral vestibular lesions produce a syndrome of oculomotor and postural deficits with the symptoms at rest, the static symptoms, partially or completely normalizing shortly after the lesion due to a process known as vestibular compensation. The symptoms are thought to result from changes in the activity of vestibular sensorimotor reflexes. Since the vestibular nuclei must be intact for recovery to occur, many investigations have focused on studying these neurons after lesions. At present, the neuronal plasticity underlying early recovery from the static symptoms is not fully understood. Here we propose that knowledge of the reflex identity and input–output connections of the recorded neurons is essential to link the responses to animal behavior. We further propose that the cellular mechanisms underlying vestibular compensation can be sorted out by characterizing the synaptic responses and time course for change in morphologically defined subsets of vestibular reflex projection neurons. Accordingly, this review focuses on the perspective gained by performing electrophysiological and immunolabeling studies on a specific subset of morphologically defined, glutamatergic vestibular reflex projection neurons, the principal cells of the chick tangential nucleus. Reference is made to pertinent findings from other studies on vestibular nuclei neurons, but no comprehensive review of the literature is intended since broad reviews already exist. From recording excitatory and inhibitory spontaneous synaptic activity in principal cells, we find that the rebalancing of excitatory synaptic drive bilaterally is essential for vestibular compensation to proceed. This work is important for it defines for the first time the excitatory and inhibitory nature of the changing synaptic inputs and the time course for changes in a morphologically defined subset of vestibular reflex projection neurons during early stages of vestibular compensation.


Neuroscience | 2009

Adaptation of chicken vestibular nucleus neurons to unilateral vestibular ganglionectomy.

Mei Shao; Anastas Popratiloff; J. Yi; A. Lerner; J.C. Hirsch; Kenna D. Peusner

Vestibular compensation refers to the behavioral recovery after a unilateral peripheral vestibular lesion. In chickens, posture and balance deficits are present immediately following unilateral vestibular ganglionectomy (UVG). After three days, most operated chickens begin to recover, but severe deficits persist in others. The tangential nucleus is a major avian vestibular nucleus whose principal cells are vestibular reflex projection neurons. From patch-clamp recordings on brain slices, the percentage of spontaneous spike firing principal cells, spike discharge rate, ionic conductances, and spontaneous excitatory postsynaptic currents (sEPSCs) were investigated one and three days after UVG. Already by one day after UVG, sEPSC frequency increased significantly on the lesion side, although no differences were detected in the percentage of spontaneous spike firing cells or discharge rate. In compensated chickens three days after UVG, the percentage of spontaneous spike firing cells increased on the lesion side and the discharge rate increased bilaterally. In uncompensated chickens three days after UVG, principal cells on the lesion side showed increased discharge rate and increased sEPSC frequency, whereas principal cells on the intact side were silent. Typically, silent principal cells exhibited smaller persistent sodium conductances and higher activation thresholds for the fast sodium channel than spiking cells. In addition, silent principal cells on the intact side of uncompensated chickens had larger dendrotoxin-sensitive potassium conductance, with a higher ratio of Kv1.1 surface/cytoplasmic expression. Increased sEPSC frequency in principal cells on the lesion side of uncompensated chickens was accompanied by decreased Kv1.2 immunolabeling of presynaptic terminals on principal cell bodies. Thus, both intrinsic ionic conductances and excitatory synaptic inputs play crucial roles at early stages after lesions. Unlike the principal cells in compensated chickens which showed similar percentages of spontaneous spike firing cells, discharge rates, and sEPSC frequencies bilaterally, principal cells in uncompensated chickens displayed gross asymmetry in these properties bilaterally.


Journal of Neurophysiology | 2012

Plasticity of spontaneous excitatory and inhibitory synaptic activity in morphologically defined vestibular nuclei neurons during early vestibular compensation

Mei Shao; June C. Hirsch; Kenna D. Peusner

After unilateral peripheral vestibular lesions, the brain plasticity underlying early recovery from the static symptoms is not fully understood. Principal cells of the chick tangential nucleus offer a subset of morphologically defined vestibular nuclei neurons to study functional changes after vestibular lesions. Chickens show posture and balance deficits immediately after unilateral vestibular ganglionectomy (UVG), but by 3 days most subjects begin to recover, although some remain uncompensated. With the use of whole cell voltage-clamp, spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) and miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from principal cells in brain slices 1 and 3 days after UVG. One day after UVG, sEPSC frequency increased on the lesion side and remained elevated at 3 days in uncompensated chickens only. Also by 3 days, sIPSC frequency increased on the lesion side in all operated chickens due to major increases in GABAergic events. Significant change also occurred in decay time of the events. To determine whether fluctuations in frequency and kinetics influenced overall excitatory or inhibitory synaptic drive, synaptic charge transfer was calculated. Principal cells showed significant increase in excitatory synaptic charge transfer only on the lesion side of uncompensated chickens. Thus compensation continues when synaptic charge transfer is in balance bilaterally. Furthermore, excessive excitatory drive in principal cells on the lesion side may prevent vestibular compensation. Altogether, this work is important for it defines the time course and excitatory and inhibitory nature of changing spontaneous synaptic inputs to a morphologically defined subset of vestibular nuclei neurons during critical early stages of recovery after UVG.


Neuroscience | 2011

ELECTROPHYSIOLOGICAL PROPERTIES OF MORPHOLOGICALLY-IDENTIFIED MEDIAL VESTIBULAR NUCLEUS NEURONS PROJECTING TO THE ABDUCENS NUCLEUS IN THE CHICK EMBRYO

Adria Gottesman-Davis; Mei Shao; June C. Hirsch; Kenna D. Peusner

Neurons in the medial vestibular nucleus (MVN) show a wide range of axonal projection pathways, intrinsic firing properties, and responses to head movements. To determine whether MVN neurons participating in the vestibulocular reflexes (VOR) have distinctive electrophysiological properties related to their output pathways, a new preparation was devised using transverse brain slices containing the chicken MVN and abducens nucleus. Biocytin Alexa Fluor was injected extracellularly into the abducens nucleus so that MVN neurons whose axons projected to the ipsilateral (MVN/ABi) and contralateral (MVN/ABc) abducens nuclei were labeled selectively. Whole-cell, patch-clamp recordings were performed to study the active and passive membrane properties, sodium conductances, and spontaneous synaptic events in morphologically-identified MVN/AB neurons and compare them to MVN neurons whose axons could not be traced (MVN/n). Located primarily in the rostral half of the ventrolateral part of the MVN, MVN/AB neurons mainly have stellate cell bodies with diameters of 20-25 μm. Compared to MVN/n neurons, MVN/ABi and MVN/ABc neurons had lower input resistances. Compared to all other MVN neuron groups studied, MVN/ABc neurons showed unique firing properties, including type A-like waveform, silence at resting membrane potential, and failure to fire repetitively on depolarization. It is interesting that the frequency of spontaneous excitatory and inhibitory synaptic events was similar for all the MVN neurons studied. However, the ratio for miniature to spontaneous inhibitory events was significantly lower for MVN/ABi neurons compared to MVN/n neurons, suggesting that MVN/ABi neurons retained a larger number and/or more active inhibitory presynaptic neurons within the brain slices. Also, MVN/ABi neurons had miniature excitatory postsynaptic currents (mEPSCs) with slower decay time and half width compared to MVN/n neurons. Altogether, these findings underscore the diversity of electrophysiological properties of MVN neuron classes distinguished by axonal projection pathways. This represents the first study of MVN/AB neurons in brain slice preparations and supports the concept that the in vitro brain slice preparation provides an advantageous model to investigate the cellular and molecular events in vestibular signal processing.


Journal of Vestibular Research-equilibrium & Orientation | 2009

Presynaptic and postsynaptic ion channel expression in vestibular nuclei neurons after unilateral vestibular deafferentation

Mei Shao; Anastas Popratiloff; June C. Hirsch; Kenna D. Peusner

Vestibular compensation refers to the recovery of function occurring after unilateral vestibular deafferentation, but some patients remain uncompensated. Similarly, more than half of the operated chickens compensate three days after unilateral vestibular ganglionectomy (UVG), but the rest remain uncompensated. This review focuses on the studies performed on the principal cells of the chick tangential nucleus after UVG. The tangential nucleus is a major avian vestibular nucleus whose principal cells are all second-order, vestibular reflex projection neurons participating in the vestibuloocular and vestibulocollic reflexes controlling posture, balance, and eye movements. Using whole-cell patch-clamp approach in brain slice preparations, spontaneous spike firing, ionic conductances, and spontaneous excitatory postsynaptic currents (sEPSCs) are recorded in principal cells from controls and operated chickens three days after UVG. In compensated chickens, the proportion of spontaneous spike firing principal cells and their spike discharge rate are symmetric on the lesion and intact sides, with the rates increased over controls. However, in the uncompensated chickens, the spike discharge rate increases on the lesion side, but not on the intact side, where only silent principal cells are recorded. In all the experimental groups, including controls, silent principal cells are distinguished from spontaneous spiking cells by smaller persistent sodium conductances and higher activation thresholds for the fast sodium channel. In addition, silent principal cells on the intact side of uncompensated chickens have larger dendrotoxin-sensitive potassium conductances, with a higher ratio of immunolabeling for surface/cytoplasmic expression of a dendrotoxin-sensitive, potassium channel subunit, Kv1.1. Finally, in compensated chickens, sEPSC frequency is symmetric bilaterally, but in uncompensated chickens sEPSC frequency increased only on the lesion side, where the expression of Kv1.2 decreased in synaptotagmin-labeled terminal profiles on the principal cell bodies. Altogether, the specific sodium and potassium channels important for the development of spike firing pattern and/or presynaptic glutamate release on vestibular reflex projection neurons may be critically involved in changing postsynaptic neuron excitability after vestibular deafferentation.


Journal of Vestibular Research-equilibrium & Orientation | 2011

Expression of glutamate receptors and potassium channels in vestibular nuclei neurons during development of signal processing

Anastas Popratiloff; Mei Shao; June C. Hirsch; Kenna D. Peusner

The principal cells of the chick tangential vestibular nucleus offer a simple neuron model to study signal processing in second-order, vestibular reflex projection neurons. The principal cells represent a relatively uniform population of vestibular nuclei neurons which receive a major input from the primary vestibular fibers and send axons to targets mainly involved in the vestibuloocular reflexes. Here, studies performed on ion channels involved in the emergence and establishment of signal processing in this morphologically-identified subset of vestibular nuclei neurons are reviewed, including the AMPA glutamate receptor subunits GluR1, GluR2, GluR3, and GluR4 and the potassium channel subunits Kv1.1 and Kv1.2.


Journal of Neurophysiology | 2003

Spontaneous Synaptic Activity Is Primarily GABAergic in Vestibular Nucleus Neurons of the Chick Embryo

Mei Shao; June C. Hirsch; Christian Giaume; Kenna D. Peusner


Journal of Neurophysiology | 2006

Emergence of action potential generation and synaptic transmission in vestibular nucleus neurons.

Mei Shao; June C. Hirsch; Kenna D. Peusner

Collaboration


Dive into the Mei Shao's collaboration.

Top Co-Authors

Avatar

Kenna D. Peusner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anastas Popratiloff

George Washington University

View shared research outputs
Top Co-Authors

Avatar

J.C. Hirsch

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Adria Gottesman-Davis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Rebecca Reddaway

George Washington University

View shared research outputs
Top Co-Authors

Avatar

A. Lerner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

J. David Dickman

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

J. Yi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

June C. Hirsch

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge