Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mei-Yeh Jade Lu is active.

Publication


Featured researches published by Mei-Yeh Jade Lu.


Plant Physiology | 2012

Characterizing Regulatory and Functional Differentiation between Maize Mesophyll and Bundle Sheath Cells by Transcriptomic Analysis

Yao-Ming Chang; Wen-Yu Liu; Arthur Chun-Chieh Shih; Meng-Ni Shen; Chen-Hua Lu; Mei-Yeh Jade Lu; Hui-Wen Yang; Tzi-Yuan Wang; Sean C.-C. Chen; Stella Maris Chen; Wen-Hsiung Li; Maurice S.B. Ku

To study the regulatory and functional differentiation between the mesophyll (M) and bundle sheath (BS) cells of maize (Zea mays), we isolated large quantities of highly homogeneous M and BS cells from newly matured second leaves for transcriptome profiling by RNA sequencing. A total of 52,421 annotated genes with at least one read were found in the two transcriptomes. Defining a gene with more than one read per kilobase per million mapped reads as expressed, we identified 18,482 expressed genes; 14,972 were expressed in M cells, including 53 M-enriched transcription factor (TF) genes, whereas 17,269 were expressed in BS cells, including 214 BS-enriched TF genes. Interestingly, many TF gene families show a conspicuous BS preference in expression. Pathway analyses reveal differentiation between the two cell types in various functional categories, with the M cells playing more important roles in light reaction, protein synthesis and folding, tetrapyrrole synthesis, and RNA binding, while the BS cells specialize in transport, signaling, protein degradation and posttranslational modification, major carbon, hydrogen, and oxygen metabolism, cell division and organization, and development. Genes coding for several transporters involved in the shuttle of C4 metabolites and BS cell wall development have been identified, to our knowledge, for the first time. This comprehensive data set will be useful for studying M/BS differentiation in regulation and function.


Biotechnology for Biofuels | 2012

A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5

Hsin-Liang Chen; Yo-Chia Chen; Mei-Yeh Jade Lu; Jui-Jen Chang; Hiaow-Ting Christine Wang; Huei-Mien Ke; Tzi-Yuan Wang; Sz-Kai Ruan; Tao-Yuan Wang; Kuo-Yen Hung; Hsing-Yi Cho; Wan-Ting Lin; Ming-Che Shih; Wen-Hsiung Li

BackgroundCellulose, which is the most abundant renewable biomass on earth, is a potential bio-resource of alternative energy. The hydrolysis of plant polysaccharides is catalyzed by microbial cellulases, including endo-β-1,4-glucanases, cellobiohydrolases, cellodextrinases, and β-glucosidases. Converting cellobiose by β-glucosidases is the key factor for reducing cellobiose inhibition and enhancing the efficiency of cellulolytic enzymes for cellulosic ethanol production.ResultsIn this study, a cDNA encoding β-glucosidase was isolated from the buffalo rumen fungus Neocallimastix patriciarum W5 and is named NpaBGS. It has a length of 2,331 bp with an open reading frame coding for a protein of 776 amino acid residues, corresponding to a theoretical molecular mass of 85.1 kDa and isoelectric point of 4.4. Two GH3 catalytic domains were found at the N and C terminals of NpaBGS by sequence analysis. The cDNA was expressed in Pichia pastoris and after protein purification, the enzyme displayed a specific activity of 34.5 U/mg against cellobiose as the substrate. Enzymatic assays showed that NpaBGS was active on short cello-oligosaccharides from various substrates. A weak activity in carboxymethyl cellulose (CMC) digestion indicated that the enzyme might also have the function of an endoglucanase. The optimal activity was detected at 40°C and pH 5 ~ 6, showing that the enzyme prefers a weak acid condition. Moreover, its activity could be enhanced at 50°C by adding Mg2+ or Mn2+ ions. Interestingly, in simultaneous saccharification and fermentation (SSF) experiments using Saccharomyces cerevisiae BY4741 or Kluyveromyces marxianus KY3 as the fermentation yeast, NpaBGS showed advantages in cell growth, glucose production, and ethanol production over the commercial enzyme Novo 188. Moreover, we showed that the KY3 strain engineered with the NpaNGS gene can utilize 2 % dry napiergrass as the sole carbon source to produce 3.32 mg/ml ethanol when Celluclast 1.5 L was added to the SSF system.ConclusionOur characterizations of the novel β-glucosidase NpaBGS revealed that it has a preference of weak acidity for optimal yeast fermentation and an optimal temperature of ~40°C. Since NpaBGS performs better than Novo 188 under the living conditions of fermentation yeasts, it has the potential to be a suitable enzyme for SSF.


Genome Biology and Evolution | 2013

Genome-Wide Patterns of Genetic Variation in Two Domestic Chickens

Wen-Lang Fan; Chen Siang Ng; Chih-Feng Chen; Mei-Yeh Jade Lu; Yu Hsiang Chen; Chia-Jung Liu; Siao-Man Wu; Chih-Kuan Chen; Jiun-Jie Chen; Chi-Tang Mao; Yu-Ting Lai; Wen-Sui Lo; Wei-Hua Chang; Wen-Hsiung Li

Domestic chickens are excellent models for investigating the genetic basis of phenotypic diversity, as numerous phenotypic changes in physiology, morphology, and behavior in chickens have been artificially selected. Genomic study is required to study genome-wide patterns of DNA variation for dissecting the genetic basis of phenotypic traits. We sequenced the genomes of the Silkie and the Taiwanese native chicken L2 at ∼23- and 25-fold average coverage depth, respectively, using Illumina sequencing. The reads were mapped onto the chicken reference genome (including 5.1% Ns) to 92.32% genome coverage for the two breeds. Using a stringent filter, we identified ∼7.6 million single-nucleotide polymorphisms (SNPs) and 8,839 copy number variations (CNVs) in the mapped regions; 42% of the SNPs have not found in other chickens before. Among the 68,906 SNPs annotated in the chicken sequence assembly, 27,852 were nonsynonymous SNPs located in 13,537 genes. We also identified hundreds of shared and divergent structural and copy number variants in intronic and intergenic regions and in coding regions in the two breeds. Functional enrichments of identified genetic variants were discussed. Radical nsSNP-containing immunity genes were enriched in the QTL regions associated with some economic traits for both breeds. Moreover, genetic changes involved in selective sweeps were detected. From the selective sweeps identified in our two breeds, several genes associated with growth, appetite, and metabolic regulation were identified. Our study provides a framework for genetic and genomic research of domestic chickens and facilitates the domestic chicken as an avian model for genomic, biomedical, and evolutionary studies.


Molecular Biology and Evolution | 2013

Inheritance of Gene Expression Level and Selective Constraints on Trans- and Cis-Regulatory Changes in Yeast

Bernhard Schaefke; J. J. Emerson; Tzi-Yuan Wang; Mei-Yeh Jade Lu; Li-Ching Hsieh; Wen-Hsiung Li

Gene expression evolution can be caused by changes in cis- or trans-regulatory elements or both. As cis and trans regulation operate through different molecular mechanisms, cis and trans mutations may show different inheritance patterns and may be subjected to different selective constraints. To investigate these issues, we obtained and analyzed gene expression data from two Saccharomyces cerevisiae strains and their hybrid, using high-throughput sequencing. Our data indicate that compared with other types of genes, those with antagonistic cis-trans interactions are more likely to exhibit over- or underdominant inheritance of expression level. Moreover, in accordance with previous studies, genes with trans variants tend to have a dominant inheritance pattern, whereas cis variants are enriched for additive inheritance. In addition, cis regulatory differences contribute more to expression differences between species than within species, whereas trans regulatory differences show a stronger association between divergence and polymorphism. Our data indicate that in the trans component of gene expression differences genes subjected to weaker selective constraints tend to have an excess of polymorphism over divergence compared with those subjected to stronger selective constraints. In contrast, in the cis component, this difference between genes under stronger and weaker selective constraint is mostly absent. To explain these observations, we propose that purifying selection more strongly shapes trans changes than cis changes and that positive selection may have significantly contributed to cis regulatory divergence.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development.

Mei-Yeh Jade Lu; Wen-Lang Fan; Woei-Fuh Wang; Tingchun Chen; Yi-Ching Tang; Fang-Hua Chu; Tun-Tschu Chang; Sheng-Yang Wang; Mengyun Li; Yi-Hua Chen; Ze-Shiang Lin; Kai-Jung Yang; Shihmay Chen; Yuchuan Teng; Yan-Liang Lin; Jei-Fu Shaw; Ting-Fang Wang; Wen-Hsiung Li

Significance Antrodia cinnamomea, a mushroom, has long been used as a remedy for cancer, hypertension, and hangover. However, the molecular basis of its medicinal effects is unclear and its genome has not been studied. We obtained a genome draft and conducted gene annotation. Genome ontology enrichment and pathway analyses shed light on sexual development and metabolite biosynthesis. We identified genes differentially expressed between mycelium and fruiting body and also proteins in the mevalonate pathway, terpenoid pathways, cytochrome P450s, and polyketide synthases, which may contribute to production of medicinal metabolites. Genes of metabolite biosynthesis pathways showed expression enrichment for tissue-specific compounds in mycelium and in fruiting body. Our data will be useful for developing a strategy to increase the production of valuable metabolites. Antrodia cinnamomea, a polyporus mushroom of Taiwan, has long been used as a remedy for cancer, hypertension, and hangover, with an annual market of over


Genome Biology and Evolution | 2014

Genomic Organization, Transcriptomic Analysis, and Functional Characterization of Avian α- and β-Keratins in Diverse Feather Forms

Chen Siang Ng; Ping Wu; Wen-Lang Fan; Jie Yan; Chih-Kuan Chen; Yu-Ting Lai; Siao-Man Wu; Chi-Tang Mao; Jun-Jie Chen; Mei-Yeh Jade Lu; Meng-Ru Ho; Randall B. Widelitz; Chih-Feng Chen; Cheng-Ming Chuong; Wen-Hsiung Li

100 million (US) in Taiwan. We obtained a 32.15-Mb genome draft containing 9,254 genes. Genome ontology enrichment and pathway analyses shed light on sexual development and the biosynthesis of sesquiterpenoids, triterpenoids, ergostanes, antroquinonol, and antrocamphin. We identified genes differentially expressed between mycelium and fruiting body and 242 proteins in the mevalonate pathway, terpenoid pathways, cytochrome P450s, and polyketide synthases, which may contribute to the production of medicinal secondary metabolites. Genes of secondary metabolite biosynthetic pathways showed expression enrichment for tissue-specific compounds, including 14-α-demethylase (CYP51F1) in fruiting body for converting lanostane to ergostane triterpenoids, coenzymes Q (COQ) for antroquinonol biosynthesis in mycelium, and polyketide synthase for antrocamphin biosynthesis in fruiting body. Our data will be useful for developing a strategy to increase the production of useful metabolites.


Genome Biology and Evolution | 2012

Transcriptomes of Mouse Olfactory Epithelium Reveal Sexual Differences in Odorant Detection

Meng-Shin Shiao; Andrew Ying-Fei Chang; Ben-Yang Liao; Yung-Hao Ching; Mei-Yeh Jade Lu; Stella Maris Chen; Wen-Hsiung Li

Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases.


Genome Biology and Evolution | 2015

Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift

Meng-Shin Shiao; Jia-Ming Chang; Wen-Lang Fan; Mei-Yeh Jade Lu; Cedric Notredame; Shu Fang; Rumi Kondo; Wen-Hsiung Li

To sense numerous odorants and chemicals, animals have evolved a large number of olfactory receptor genes (Olfrs) in their genome. In particular, the house mouse has ∼1,100 genes in the Olfr gene family. This makes the mouse a good model organism to study Olfr genes and olfaction-related genes. To date, whether male and female mice possess the same ability in detecting environmental odorants is still unknown. Using the next generation sequencing technology (paired-end mRNA-seq), we detected 1,088 expressed Olfr genes in both male and female olfactory epithelium. We found that not only Olfr genes but also odorant-binding protein (Obp) genes have evolved rapidly in the mouse lineage. Interestingly, Olfr genes tend to express at a higher level in males than in females, whereas the Obp genes clustered on the X chromosome show the opposite trend. These observations may imply a more efficient odorant-transporting system in females, whereas a more active Olfr gene expressing system in males. In addition, we detected the expression of two genes encoding major urinary proteins, which have been proposed to bind and transport pheromones or act as pheromones in mouse urine. This observation suggests a role of main olfactory system (MOS) in pheromone detection, contrary to the view that only accessory olfactory system (AOS) is involved in pheromone detection. This study suggests the sexual differences in detecting environmental odorants in MOS and demonstrates that mRNA-seq provides a powerful tool for detecting genes with low expression levels and with high sequence similarities.


Zoological Studies | 2013

Transcriptional profiling of adult Drosophila antennae by high-throughput sequencing

Meng-Shin Shiao; Wen-Lang Fan; Shu Fang; Mei-Yeh Jade Lu; Rumi Kondo; Wen-Hsiung Li

Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking. We therefore studied the transcriptomes of antennae, the main organ responsible for detecting food resource and oviposition, of D. sechellia and its two sibling species. We wanted to know whether gene expression, particularly chemosensory genes, has diverged between D. sechellia and its two sibling species. Using a very stringent definition of differential gene expression, we found a higher percentage of chemosensory genes differentially expressed in the D. sechellia lineage (7.8%) than in the D. simulans lineage (5.4%); for upregulated chemosensory genes, the percentages were 8.8% in D. sechellia and 5.2% in D. simulans. Interestingly, Obp50a exhibited the highest upregulation, an approximately 100-fold increase, and Or85c—previously reported to be a larva-specific gene—showed approximately 20-fold upregulation in D. sechellia. Furthermore, Ir84a (ionotropic receptor 84a), which has been proposed to be associated with male courtship behavior, was significantly upregulated in D. sechellia. We also found expression divergence in most of the chemosensory gene families between D. sechellia and the two sibling species. Our observations suggest that the host shift of D. sechellia was associated with the enrichment of differentially expressed, particularly upregulated, chemosensory genes.


BMC Genomics | 2015

Transcriptomic analyses of regenerating adult feathers in chicken

Chen Siang Ng; Chih-Kuan Chen; Wen-Lang Fan; Ping Wu; Siao-Man Wu; Jiun-Jie Chen; Yu-Ting Lai; Chi-Tang Mao; Mei-Yeh Jade Lu; Di-Rong Chen; Ze-Shiang Lin; Kai-Jung Yang; Yuan-An Sha; Tsung-Che Tu; Chih-Feng Chen; Cheng-Ming Chuong; Wen-Hsiung Li

BackgroundAntennae of fruit flies are the major organs responsible for detecting environmental volatiles, e.g., egg-laying substrates. An adult antenna contains many sensilla full of olfactory sensory neurons, where olfactory receptor (Or) genes are expressed. Each sensory neuron only expresses up to three receptors, making it difficult to estimate expression levels by conventional methods. In this study, we applied Illumina RNA sequencing (RNA-seq) to study the expression levels of Or and other genes in fly antennae.ResultsRNA from approximately 1,200 pairs of adult antennae from each sex of Drosophila melanogaster was used to obtain the antennal transcriptome of each sex. We detected approximately 12,000 genes expressed in antennae of either sex. The most highly expressed genes included pheromone-binding genes, transmembrane transporter genes, and sensory reception genes. Among the 61 annotated Or genes, we observed 53 and 54 genes (approximately 90%) expressed (fragments per kilobase of exon per million fragments mapped (FPKM) > 0.05) in male and female antennae, respectively; approximately 25 genes were expressed with FPKM > 15. Compared to previous studies, which extracted RNA from the whole body or head and used microarrays, antenna-specific transcriptomes obtained by RNA-seq provided more reliable estimates of gene expression levels and revealed many lowly expressed genes. Ninty-one genes, including one odorant-binding protein (Obp) gene and four Or genes, were differentially expressed between male and female antennae. These sexually biased genes were enriched on the X chromosome and showed enrichment in different gene ontology categories for male and female flies. The present and previous data together suggest that a gene family with putative immune response functions is related to pheromone detection and involved in the courtship behavior of male flies.ConclusionsTissue-specific RNA-seq is powerful for detecting lowly expressed genes. Our study provides new insight into the expression of olfactory-related genes in Drosophila antennae.

Collaboration


Dive into the Mei-Yeh Jade Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Feng Chen

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge