Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mei Yin Zhang is active.

Publication


Featured researches published by Mei Yin Zhang.


Lancet Oncology | 2012

Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis

Na Liu; Nian Yong Chen; Rui Xue Cui; Wen Fei Li; Yan Li; Rong Rong Wei; Mei Yin Zhang; Ying Sun; Bi Jun Huang; Mo Chen; Qing Mei He; Ning Jiang; Lei Chen; William C.S. Cho; Jing Ping Yun; Jing Zeng; Li Zhi Liu; Li Li; Ying Guo; Hui Yun Wang; Jun Ma

BACKGROUND MicroRNAs (miRNAs) can be used as prognostic biomarkers in many types of cancer. We aimed to identify miRNAs that were prognostic in patients with nasopharyngeal carcinoma. METHODS We retrospectively analysed miRNA expression profiles in 312 paraffin-embedded specimens of nasopharyngeal carcinoma from Sun Yat-sen University Cancer Center (Guangzhou, China) and 18 specimens of non-cancer nasopharyngitis. Using an 873 probe microarray, we assessed associations between miRNA signatures and clinical outcome in a randomly selected 156 samples (training set) and validated findings in the remaining 156 samples (internal validation set). We confirmed the miRNAs signature using quantitative RT-PCR analysis in 156 samples from a second randomisation of the 312 samples, and validated the miRNA signature in 153 samples from the West China Hospital of Sichuan University in Chengdu, China (independent set). We used the Kaplan-Meier method and log-rank tests to estimate correlations of the miRNA signature with disease-free survival (DFS), distant metastasis-free survival (DMFS), and overall survival. FINDINGS 41 miRNAs were differentially expressed between nasopharyngeal carcinoma and non-cancer nasopharyngitis tissues. A signature of five miRNAs, each significantly associated with DFS, was identified in the training set. We calculated a risk score from the signature and classified patients as high risk or low risk. Compared with patients with low-risk scores, patients with high risk scores in the training set had shorter DFS (hazard ratio [HR] 2·73, 95% CI 1·46-5·11; p=0·0019), DMFS (3·48, 1·57-7·75; p=0·0020), and overall survival (2·48, 1·24-4·96; p=0·010). We noted equivalent findings in the internal validation set for DFS (2·47, 1·32-4·61; p=0·0052), DMFS (2·28, 1·09-4·80; p=0·030), and overall survival (2·87, 1·38-5·96; p=0·0051) and in the independent set for DFS (3·16, 1·65-6·04; p=0·0011), DMFS (2·39, 1·05-5·42; p=0·037), and overall survival (3·07, 1·34-7·01; p=0·0082). The five-miRNA signature was an independent prognostic factor. A combination of this signature and TNM stage had better prognostic value than did TNM stage alone in the training set (area under receiver operating characteristics 0·68 [95% CI 0·60-0·76] vs 0·60 [0·52-0·67]; p=0·013), the internal validation set (0·70 [0·61-0·78] vs 0·61 [0·54-0·68]; p=0·012), and the independent set (0·70 [0·62-0·78] vs 0·63 [0·56-0·69]; p=0·032). INTERPRETATION Identification of patients with the five-miRNA signature might add prognostic value to the TNM staging system and inform treatment decisions for patients at high risk of progression. FUNDING Science Foundation of Chinese Ministry of Health, National Natural Science Foundation of China, Pearl River Scholar Funded Scheme, Guangdong Key Scientific and Technological Innovation Program, Guangdong Natural Science Foundation, Fundamental Research Funds for the Central Universities.


PLOS ONE | 2012

Downregulation of Six MicroRNAs Is Associated with Advanced Stage, Lymph Node Metastasis and Poor Prognosis in Small Cell Carcinoma of the Cervix

Long Huang; Jia Xin Lin; Yan Hong Yu; Mei Yin Zhang; Hui Yun Wang; Min Zheng

Background Small cell carcinoma of the cervix (SCCC) is very rare, and due to the long time period required to recruit sufficient numbers of patients, there is a paucity of information regarding the prognostic factors associated with survival. MicroRNAs (miRNAs) have been used as cancer-related biomarkers in a variety of tumor types, and the objective of this study was to determine whether microRNA expression profiles can predict clinical outcome in SCCC. Methodology/Principal Findings Forty-four patients with SCCC who underwent radical hysterectomy between January 2000 and October 2009 were enrolled. Using the GeneCopoeia All-in-One™ Customized Human qPCR Primer Array, the expression profiles of 30 miRNAs associated with tumor metastasis was obtained from the formalin-fixed paraffin embedded samples of all 44 patients. Seven miRNAs, has-let-7c, has-miR-10b, has-miR-100, has-miR-125b, has-miR-143, has-miR-145 and has-miR-199a-5p were significantly down-regulated in advanced stage SCCCpatients (FIGO IB2-IV) compared to early stage SCCC patients (FIGOIB1). Among, downregulation of six miRNAs, has-let-7c, has-miR-100, has-miR-125b, has-miR-143, has-miR-145 and has-miR-199a-5p were significantly associated with lymph node metastasis and reduced survival in SCCC. Kaplan–Meier survival analyses revealed that SCCC patients with low expression of has-miR-100 (P = 0.019) and has-miR-125b (P = 0.020) projected a significant tendency towards poorer prognosis. Conclusions/Significance This study demonstrates that downregulation of 7 miRNA associated with advanced stage, 6 miRNAs with metastasis and 2 with poor prognosis in SCCC. Functional analysis of these miRNAs may enhance our understanding of SCCC, as altered expression of specific miRNAs may regulate the metastatic pathway and provide novel targets for therapy.


Clinical Cancer Research | 2013

Clinical Significance and Prognostic Value of microRNA Expression Signatures in Hepatocellular Carcinoma

Rongrong Wei; Guo Liang Huang; Mei Yin Zhang; Bin Kui Li; Hui Zhong Zhang; Ming Shi; Xiao Qian Chen; Long Huang; Qing Ming Zhou; Wei Hua Jia; X.F. Steven Zheng; Yun Fei Yuan; Hui Yun Wang

Purpose: MicroRNAs (miRNAs) play important roles in the development and progression of cancer. The aim of this study is to identify miRNA expression signatures in hepatocellular carcinoma and delineate their clinical significance for hepatocellular carcinoma. Experimental Design: Patients with hepatocellular carcinoma, undergoing hepatectomy were randomly divided into training set (60 patients) and test set (50 patients). Other 56 patients were used as an independent cohort. The miRNA expression levels were detected by microarray and verified by quantitative real-time reverse transcription-PCR (qRT-PCR). Results: A 30-miRNA signature consisting of 10 downregulated and 20 upregulated miRNAs was established for distinguishing hepatocellular carcinoma from noncancerous liver tissues in the training set with 99.2% accuracy. The classification accuracies of this signature were 97% and 90% in the test set and independent cohort, respectively. The expression level of four miRNAs in the 30-miRNA signature was verified by qRT-PCR in the training set. Twenty miRNAs were then selected to construct prognostic signature in the training set. Of the 20 miRNAs, six were risk factors and 14 were protective factors. A formula based on the 20 miRNAs was built to compute prognostic index. Kaplan–Meier analysis showed that patients with a higher prognostic index had a significantly lower survival than those with a low index. This was verified in the test and independent sets. Multivariate analysis indicated that the 20-miRNA signature was an independent prognostic predictor. Conclusions: The 30- and 20-miRNA signatures identified in this study should provide new molecular approaches for diagnosis and prognosis of patients with hepatocellular carcinoma and clues for elucidating molecular mechanism of hepatocarcinogenesis. Clin Cancer Res; 19(17); 4780–91. ©2013 AACR.


Cell Death and Disease | 2014

Prognostic significance of low DICER expression regulated by miR-130a in cervical cancer

Li He; Hui Yun Wang; Lanjun Zhang; Lanlan Huang; Li J; Ying Xiong; Mei Yin Zhang; W. H. Jia; Jing Ping Yun; Rongzhen Luo; M. Zheng

Dicer is crucial for the maturation of microRNAs (miRNAs) and its dysregulation may contribute to tumor initiation and progression. The study explored the clinical implications of Dicer and its post-transcriptional regulation by microRNAs in cervical cancer. qRT-PCR and immunohistochemistry investigated Dicer mRNA and protein levels in cervical cancer tissues. The relationship between Dicer expression and survival was analyzed. MiRNA target prediction identified miRNAs that might target Dicer. Luciferase reporter and gain- or loss-of-function assays were performed. The results showed that 36.7% of cervical cancer cases showed low expression of Dicer mRNA and 63.3% cases showed high expression. At the protein level, 51% cases showed negative expression and 49% cases showed positive expression. Dicer mRNA and protein expressions were significantly associated with distant metastasis and recurrence in cervical cancer (P=0.002 and P=0.012, respectively). Multivariate Cox analysis indicated that low Dicer expression (P=0.016) and tumor stage (P=0.047) were independent predictors. Among the miRNAs predicted to target Dicer, 10 were detected by RT-PCR; their expressions were significantly higher in cervical cancers with lower Dicer expression than in those with higher Dicer expression and were negatively correlated with Dicer expression level (P<0.05). In vitro experiments demonstrated that miR-130a directly targeted Dicer mRNA to enhance migration and invasion in SiHa cells. Finally, survival analysis indicated that higher expression of miR-130a was significantly associated with poor disease-free survival. Taken together, Dicer expression regulated by miR-130a is an important potential prognostic factor in cervical cancer.


Medical Oncology | 2014

Checkpoint kinase 1 is negatively regulated by miR-497 in hepatocellular carcinoma

Yin Xie; Rong Rong Wei; Guo Liang Huang; Mei Yin Zhang; Yun Fei Yuan; Hui Yun Wang

Checkpoint kinase 1 (CHEK1) is an evolutionarily conserved Ser/Thr kinase, which mediates cell-cycle arrest after DNA damage, and we previously reported that CHEK1 was overexpressed and associated with poor prognosis in hepatocellular carcinoma (HCC), indicating it was oncogenic gene. In this study, we aimed to elucidate the mechanism of CHEK1 overexpression in HCC. We first verified the upregulated CHEK1 by qRT-PCR and western blot in 30 HCC samples compared with corresponding non-tumor liver tissues. In silico analysis showed that CHEK1 was a candidate target of miR-497, which was previously found to be downregulated in HCC by us. To test whether miR-497 could bind to 3′untranslated region (3′UTR) of CHEK1, luciferase reporter assay was conducted. The result revealed that miR-497 could bind to the 3′untranslated region (3′UTR) of CHEK1 mRNA. Western blot showed that ectopic expression of miR-497 suppressed the CHEK1 expression and inhibition of miR-497 led to significant upregulation of CHEK1. Finally, miR-497 expression was measured in the same 30 HCC samples, and the correlation between miR-497 and CHEK1 was analyzed. The results indicated that miR-497 was downregulated in HCC and had a significant negative correlation with CHEK1. Taken together, these results demonstrated that CHEK1 was negatively regulated by miR-497, and the overexpressed CHEK1 was resulted from the downregulated miR-497 in HCC, which provided a potential molecular target for HCC therapy.


Oncotarget | 2016

Upregulated TRIM29 promotes proliferation and metastasis of nasopharyngeal carcinoma via PTEN/AKT/mTOR signal pathway

Xiao Min Zhou; Rui Sun; Dong Hua Luo; Jian Sun; Mei Yin Zhang; Meng He Wang; Yang Yang; Hui Yun Wang; Shi Juan Mai

Tripartite motif–containing 29 (TRIM29) has been reported to be dysregulated in human cancers. Up-regulation of TRIM29 was first observed in NPC cell lines by a genome-wide transcriptome analysis in our previous study. However, its expression biological function and clinical significance in nasopharyngeal carcinoma (NPC) remain unclear. In this study, TRIM29 expression was validated by qRT-PCR and immunohistochemistry in 69 NPC samples. Notably, TRIM29 protein expression was significantly and positively correlated with the tumor size, clinical stage and metastasis. TRIM29 was identified as the direct target of miR-335-5p and miR-15b-5p, both of which were down-regulated and negatively associated with TRIM29 expression in NPC cell lines and clinical samples. Ectopic TRIM29 expression promoted proliferation, epithelial-mesenchymal transition (EMT), migration and invasion in NPC cells, while its depletion inhibited cell invasion and EMT phenotype. Mechanistically, TRIM29 overexpression reduced PTEN expression and increase phosphorylated protein level of AKT, p70S6K and 4E-BP1. Correspondingly, AKT inhibitor and Rapamycin blocked the effect of TRIM29 on cell invasion. In conclusion, our results suggest that miR-335-5p and miR-15b-5p down-regulation results in TRIM29 over-expression, which induces proliferation, EMT and metastasis of NPC through the PTEN/AKT/mTOR signaling pathway.


BMC Cancer | 2015

Identification of a novel microRNA signature associated with intrahepatic cholangiocarcinoma (ICC) patient prognosis

Mei Yin Zhang; Shu Hong Li; Guo Liang Huang; Guo He Lin; Ze Yu Shuang; Xiang Ming Lao; Li Xu; Xiao Jun Lin; Hui Yun Wang; Shengping Li

BackgroundThe clinical significance of microRNAs (miRNAs) in intrahepatic cholangiocarcinoma (ICC) is unclear. The objective of this study is to examine the miRNA expression profiles and identify a miRNA signature for the prognosis of ICC.MethodsUsing a custom microarray containing 1,094 probes, the miRNA expression profiles of 63 human ICCs and nine normal intrahepatic bile ducts (NIBD) were assessed. The miRNA signatures were established and their clinical significances in ICC were analyzed. The expression levels of some miRNAs were verified by quantitative real-time RT-PCR (qRT-PCR).ResultsExpression profile analysis showed 158 differentially expressed miRNAs between ICC and NIBD, with 77 up-regulated and 81 down-regulated miRNAs. From the 158 differentially expressed miRNAs, a 30-miRNA signature consisting of 10 up-regulated and 20 down-regulated miRNAs in ICC was established for distinguishing ICC from NIBD with 100% accuracy. A separate 3-miRNA signature was identified for predicting prognosis in ICC. Based on the 3-miRNA signature, a formula was constructed to compute a risk score for each patient. The patients with high-risk had significantly lower overall survival and disease-free survival than those with low-risk. The expression level of these three miRNAs detected by microarray was verified by qRT-PCR. Multivariate analysis indicated that the 3-miRNA signature was an independent prognostic predictor.ConclusionsIn this study, a 30-miRNA signature for distinguishing ICC from NIBD, and a 3-miRNA signature for evaluating prognosis of ICC were established, which might be able to serve as biomarkers for prognosis of ICC. Further studies focusing on these miRNAs may shed light on the mechanisms associated with ICC pathogenesis and progression.


Aging (Albany NY) | 2016

Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma

Li‑Si Zeng; Xian Zi Yang; Yue Feng Wen; Shi Juan Mai; Meng He Wang; Mei Yin Zhang; X. F. Steven Zheng; Hui Yun Wang

Histone deacetylases (HDACs) mediate histone deacetylation, leading to transcriptional repression, which is involved in many diseases, including age-related tissue degeneration, heart failure and cancer. In this study, we were aimed to investigate the expression, clinical significance and biological function of HDAC4 in esophageal carcinoma (EC). We found that HDAC4 mRNA and protein are overexpressed in esophageal squamous cell carcinoma (ESCC) tissues and cell lines. HDAC4 overexpression is associated with higher tumor grade, advanced clinical stage and poor survival. Mechanistically, HDAC4 promotes proliferation and G1/S cell cycle progression in EC cells by inhibiting cyclin-dependent kinase (CDK) inhibitors p21 and p27 and up-regulating CDK2/4 and CDK-dependent Rb phosphorylation. HDAC4 also enhances ESCC cell migration. Furthermore, HDAC4 positively regulates epithelial-mesenchymal transition (EMT) by increasing the expression of Vimentin and decreasing the expression of E-Cadherin/α-Catenin. Together, our study shows that HDAC4 overexpression is important for the oncogenesis of EC, which may serve as a useful prognostic biomarker and therapeutic target for this malignancy.


Cell Death and Disease | 2018

Epithelial cell adhesion molecule overexpression regulates epithelial-mesenchymal transition, stemness and metastasis of nasopharyngeal carcinoma cells via the PTEN/AKT/mTOR pathway

Meng He Wang; Rui Sun; Xiao Min Zhou; Mei Yin Zhang; Jia Bin Lu; Yang Yang; Li Si Zeng; Xian Zi Yang; Lu Shi; Ruo Wen Xiao; Hui Yun Wang; Shi Juan Mai

Epithelial cell adhesion molecule (EpCAM) is known to be highly expressed in a variety of epithelial carcinomas, and it is involved in cell adhesion and proliferation. However, its expression profile and biological function in nasopharyngeal carcinoma (NPC) remains unclear. In this study, higher expression of EpCAM was found in NPC samples compared with non-cancer nasopharyngeal mucosa by qRT-PCR. Additionally, immunohistochemistry (IHC) analysis of NPC specimens from 64 cases showed that high EpCAM expression was associated with metastasis and shorter survival. Multivariate survival analysis identified high EpCAM expression as an independent prognostic factor. Ectopic EpCAM expression in NPC cells promoted epithelial-mesenchymal transition (EMT), induced a cancer stem cell (CSC)-like phenotype, and enhanced metastasis in vitro and in vivo without an effect on cell proliferation. Notably, EpCAM overexpression reduced PTEN expression and increased the level of AKT, mTOR, p70S6K and 4EBP1 phosphorylation. Correspondingly, an AKT inhibitor and rapamycin blocked the effect of EpCAM on NPC cell invasion and stem-like phenotypes, and siRNA targeting PTEN rescued the oncogenic activities in EpCAM knockdown NPC cells. Our data demonstrate that EpCAM regulates EMT, stemness and metastasis of NPC cells via the PTEN/AKT/mTOR pathway.


Journal of Cancer Research and Clinical Oncology | 2017

MicroRNA-34c-3p promotes cell proliferation and invasion in hepatocellular carcinoma by regulation of NCKAP1 expression

Cheng Zuo Xiao; Wei Wei; Zhi Xing Guo; Mei Yin Zhang; Yong Fa Zhang; Jia Hong Wang; Ming Shi; Hui Yun Wang; Rong Ping Guo

Purpose Our previous miRNA profiling study indicated that microRNA-34c-3p (miR-34c-3p) was overexpressed and associated with survival in HCC. This study is aimed to confirm its clinical significance and explore the function and underlying mechanism of miR-34c-3p in HCC.MethodsWe first evaluated miR-34c-3p expression and its relationship with prognosis in HCC patients. We then established stable HCC cell lines with miR-34c-3p overexpression and knockdown by the lentiviral packaging systems and performed the functional assays in vitro and in vivo, respectively. We next identified the target of miR-34c-3p by using microRNA target databases and dual-luciferase assay. Finally, the correlation between the expression of miR-34c-3p and the target gene was analyzed by immunohistochemistry and qRT-PCR in HCC tissues and hepatoma xenografts.ResultsOverexpressed miR-34c-3p was confirmed in HCC tissues and significantly associated with poor survival of HCC patients. miR-34c-3p expression was also recognized as an independent risk factor for DFS and OS in multivariate analysis. Ectopic expression of miR-34c-3p significantly promotes the proliferation, colony formation, invasion and cell cycle regression of HCC cell lines. Knockdown of miR-34c-3p remarkably blocked hepatoma growth in the xenograft model. miRNA target databases and luciferase reporter assay showed that NCKAP1 was a direct target of miR-34c-3p in HCC cells and the high expression of NCKAP1 in HCC tissues is significantly correlated with low expression of miR-34c-3p and associated with a favorable prognosis of HCC patients.ConclusionThe current study demonstrates that miR-34c-3p functions as a tumor promoter by targeting NCKAP1 that is associated with prognosis in HCC. miR-34c-3p and NCKAP1 may be new potential molecular targets for HCC therapy.

Collaboration


Dive into the Mei Yin Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guo Liang Huang

Guangdong Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Long Huang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Shi

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yang Yang

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge