Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meifang Zhang is active.

Publication


Featured researches published by Meifang Zhang.


Free Radical Biology and Medicine | 2014

Mass spectrometry-based metabolomic profiling identifies alterations in salivary redox status and fatty acid metabolism in response to inflammation and oxidative stress in periodontal disease

Yijing Huang; Mingjiang Zhu; Zi Li; Rina Sa; Qianqian Chu; Qingli Zhang; Haifeng Zhang; Wen Tang; Meifang Zhang; Huiyong Yin

Periodontal diseases represent the most common chronic inflammatory diseases in humans and a major cause of tooth loss. Combining mass spectrometry-based ionomics and targeted lipidomics on fatty acid metabolites, we identified significant alterations in redox status and fatty acid metabolism in saliva in response to chronic inflammation and oxidative stress in periodontal disease in a cohort of nonsmoker subjects with chronic periodontitis. For the first time, ionomic profiling of around 30 ions in saliva revealed significantly decreased levels of redox-active metal ions including Mn, Cu, and Zn in the periodontal group, which is consistent with decreased levels of superoxide dismutases in saliva and serum. A targeted lipidomic approach was employed to monitor the major metabolites of arachidonic acid and linoleic acid in saliva. We observed increased levels of cyclooxygenase products including PGE2, PGD2, and PGF2α and TXB2, but decreased level of PGI2 in the periodontal group. A unique pattern of the lipoxygenase products of arachidonic acid and linoleic acid was observed with increased level of 5-HETE but decreased levels of 13-HODE and 9-HODE. Levels of salivary F2-isoprostanes, free radical lipid peroxidation products, and a gold standard for oxidative stress in vivo were also significantly elevated. Taking these data together, our study using multiple powerful omics techniques demonstrates that local redox alteration contributes significantly to periodontitis through the modulation of fatty acid metabolism in response to inflammation and oxidative stress. This study highlights the importance of redox status in periodontitis and provides a rationale for preventing periodontal disease by dietary interventions aiming to restore redox balance.


Journal of Medicinal Chemistry | 2014

Identification of a Novel Aminotetralin Class of HDAC6 and HDAC8 Selective Inhibitors

Guozhi Tang; Jason Christopher Wong; Weixing Zhang; Zhanguo Wang; Nan Zhang; Zhenghong Peng; Zhenshan Zhang; Yiping Rong; Shijie Li; Meifang Zhang; Lingjie Yu; Teng Feng; Xiongwen Zhang; Xihan Wu; Jim Zhen Wu; Li Chen

Herein we report the identification of a novel class of HDAC6 and HDAC8 selective inhibitors through a unique chemistry and phenotypic screening strategy. Tetrahydroisoquinoline 12 was identified as a potent HDAC6 and HDAC8 dual inhibitor from a focused library through cellular tubulin acetylation and p21 induction screening assays. Scaffold hopping from 12 led to the discovery of an aminotetralin class of HDAC inhibitors. In particular, the 3-R stereoisomer 32 showed highly potent inhibition against HDAC6 and HDAC8 with IC50 values of 50 and 80 nM, respectively. Treatment of neuroblastoma BE(2)C cells with 32 resulted in elevated levels of acetylated tubulin, TrkA, and neurite outgrowth with only marginal effects on p21 induction and histone H3 acetylation. Consistent with its weak enzymatic inhibition of HDAC1, 32 showed significantly less cytotoxicity than SAHA and moderately inhibited the growth of myeloma NCI-H929 and OPM-2 cells.


Journal of Medicinal Chemistry | 2012

Pharmacokinetic Optimization of Class-Selective Histone Deacetylase Inhibitors and Identification of Associated Candidate Predictive Biomarkers of Hepatocellular Carcinoma Tumor Response

Jason Christopher Wong; Guozhi Tang; Xihan Wu; Chungen Liang; Zhenshan Zhang; Lei Guo; Zhenghong Peng; Weixing Zhang; Xianfeng Lin; Zhanguo Wang; Jianghua Mei; Junli Chen; Song Pan; Nan Zhang; Yongfu Liu; Mingwei Zhou; Lichun Feng; Weili Zhao; Shijie Li; Chao Zhang; Meifang Zhang; Yiping Rong; Tai-Guang Jin; Xiongwen Zhang; Shuang Ren; Ying Ji; Rong Zhao; Jin She; Yi Ren; Chunping Xu

Herein, we describe the pharmacokinetic optimization of a series of class-selective histone deacetylase (HDAC) inhibitors and the subsequent identification of candidate predictive biomarkers of hepatocellular carcinoma (HCC) tumor response for our clinical lead using patient-derived HCC tumor xenograft models. Through a combination of conformational constraint and scaffold hopping, we lowered the in vivo clearance (CL) and significantly improved the bioavailability (F) and exposure (AUC) of our HDAC inhibitors while maintaining selectivity toward the class I HDAC family with particular potency against HDAC1, resulting in clinical lead 5 (HDAC1 IC₅₀ = 60 nM, mouse CL = 39 mL/min/kg, mouse F = 100%, mouse AUC after single oral dose at 10 mg/kg = 6316 h·ng/mL). We then evaluated 5 in a biomarker discovery pilot study using patient-derived tumor xenograft models, wherein two out of the three models responded to treatment. By comparing tumor response status to compound tumor exposure, induction of acetylated histone H3, candidate gene expression changes, and promoter DNA methylation status from all three models at various time points, we identified preliminary candidate response prediction biomarkers that warrant further validation in a larger cohort of patient-derived tumor models and through confirmatory functional studies.


Journal of Medicinal Chemistry | 2015

Design and Synthesis of Orally Bioavailable Aminopyrrolidinone Histone Deacetylase 6 Inhibitors

Xianfeng Lin; Wenming Chen; Zongxing Qiu; Lei Guo; Wei Zhu; Wentao Li; Zhanguo Wang; Weixing Zhang; Zhenshan Zhang; Yiping Rong; Meifang Zhang; Lingjie Yu; Sheng Zhong; Rong Zhao; Xihan Wu; Jason Christopher Wong; Guozhi Tang

Histone deacetylase 6 (HDAC6) removes the acetyl group from lysine residues in a number of non-histone substrates and plays important roles in microtubule dynamics and chaperone activities. There is growing interest in identifying HDAC6-selective inhibitors as chemical biology tools and ultimately as new therapeutic agents. Herein we report the design, synthesis, and phenotypic screening of a novel class of 3-aminopyrrolidinone-based hydroxamic acids as HDAC6 inhibitors. In particular, the α-methyl-substituted enantiomer 33 (3-S) showed significant in-cell tubulin acetylation (Tub-Ac) with an EC50 of 0.30 μM but limited impact on p21 levels at various concentrations. In enzyme inhibition assays, 33 demonstrated high selectivity for HDAC6 with an IC50 of 0.017 μM and selectivity indexes of 10 against HDAC8 and over 4000 against HDAC1-3 isoforms. Moreover, 33 has suitable drug metabolism and pharmacokinetics properties compared with other hydroxamic acid-based HDAC inhibitors, warranting further biological studies and development as a selective HDAC6 inhibitor.


PLOS ONE | 2013

Decrease of Fibulin-3 in Hepatocellular Carcinoma Indicates Poor Prognosis

Rongzhen Luo; Meifang Zhang; Lili Liu; Shi-Xun Lu; Chris Zhiyi Zhang; Jingping Yun

Fibulin-3, originally identified in senescent and Werner syndrome fibroblasts, has been implicated in cell morphology, growth, adhesion and motility. Fibulin-3 exhibits both antitumor and oncogenic activities towards human cancers; however, the role of Fibulin-3 in hepatocellular carcinoma (HCC) remains elusive. In this study, we showed that both the mRNA and protein levels of Fibulin-3 were remarkably downregulated in HCC cell lines and fresh tissues. Immunohistochemical data revealed that Fibulin-3 was decreased in tumorous tissues in 67.1% (171/255) of cases compared to the corresponding adjacent nontumorous tissues. The results of statistical analysis indicated that low Fibulin-3 expression, defined by the receiver operating characteristic curve (ROC), was significantly associated with tumor differentiation (P = 0.008), clinical stage (P = 0.014) and serum AFP levels (P<0.01). Furthermore, Kaplan-Meier and multivariate analysis suggested that Fibulin-3 is an independent negative prognostic indicator for both overall (P<0.001) and recurrence-free (P = 0.036) survival. In addition, an in vitro study demonstrated that knockdown of Fibulin-3 by siRNA markedly increased cell viability and promoted cell invasion in HCC cells. Collectively, our data suggest that Fibulin-3 exhibits antitumor effects towards HCC and serves as a biomarker of unfavorable prognosis for this deadly disease.


International Journal of Biological Macromolecules | 2016

Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide

Qingsen Shang; Jingjing Shi; Guanrui Song; Meifang Zhang; Chao Cai; Jiejie Hao; Guoyun Li; Guangli Yu

Chondroitin sulfate (CS) as a dietary supplement and a symptomatic slow acting (SYSA) drug has been used for years. Recently, CS has been demonstrated to be readily degraded and fermented in vitro by specific human gut microbes, hinting that dietary CS may pose a potential effect on gut microbiota composition in vivo. However, until now, little information is available on modulations of gut microbiota by CS. In the present study, modulations of gut microbiota in Kunming mice by CS and its oligosaccharide (CSO) were investigated by high-throughput sequencing. As evidenced by Heatmap and principal component analysis (PCA), the female microbiota were more vulnerable than the male microbiota to CS and CSO treatment. Besides, it is of interest to found that CS and CSO had differing effects on the abundance of Bacteroidales S24-7, Bacteroides, Helicobacter, Odoribacter, Prevotellaceae and Lactobacillus in male mice versus female mice. Collectively, we demonstrated a sex-dependent effect on gut microbiota of CS and CSO. In addition, since gut microbiota exerts a major effect on host physiology, our study highlighted that certain beneficial effects of CS may be associated with modulations of gut microbiota, which merits further investigation.


PLOS ONE | 2014

Targeting Cadherin-17 Inactivates Ras/Raf/MEK/ERK Signaling and Inhibits Cell Proliferation in Gastric Cancer

Zhaohu Lin; Chao Zhang; Meifang Zhang; Danqing Xu; Yanfen Fang; Zheng Zhou; Ning Qin; Xiongwen Zhang

Cadherin-17 (CDH17), one member of 7D-cadherin superfamily, was overexpressed in gastric cancer (GC) and was associated with poor survival, tumor recurrence, metastasis, and advanced tumor stage. So far the cellular function and signaling mechanism of CDH17 in GC remains unclear. In this study, we showed that over 66% of GC cell lines (20/30) were CDH17 positive. Tissue microarray (TMA) assay showed that 73.6% Chinese GC tissues (159/216) were CDH17 positive, while 37% respective adjacent normal tissues were CDH17 positive. Knockdown of CDH17 inhibited cell proliferation, migration, adhesion and colony formation, and also induced a cell cycle arrest and apoptosis in AGS human GC cells. On the other side, overexpression of CDH17 facilitated MGC-803 GC tumor growth in nude mice. Antibody array and Western blotting assay demonstrated that knockdown of CDH17 in AGS cells down-regulated integrin β series proteins, further inactivated the Ras/Raf/MEK/ERK pathway and led to p53 and p21 accumulation, which resulted in proliferation inhibition, cell-cycle arrest and apoptosis induction. Collectively, our data firstly demonstrate the capacity of CDH17 to regulate the activity of Ras/Raf/MEK/ERK pathway for cell proliferation in GC, and suggest that CDH17 can serve as an attractive therapeutic target for future research.


Perspectives-studies in Translatology | 2013

Stance and mediation in transediting news headlines as paratexts

Meifang Zhang

Abstract News headlines are a kind of paratexts which occupy a privileged place of pragmatics and strategy in news reports. They are expected to offer key information of the news events and to attract the target readers. This paper examines the stances and mediation indicated in the global news headlines of four international news events which happened between the years 2008–2010. It draws on the Appraisal Theory, which was developed by Martin and White (2005) upon Hallidays (1978, 1994) SFL, as the theoretical support for the analysis. The analysis shows that global news headlines involve working with discourse that is heavily mediated and recontextualized, in which the transeditors put their own knowledge and values into the transedited texts. It is argued that when value-loaded discourse is an indication of a stance adopted, an absence of such discourse in news headlines, or even an absence of reporting on a particular event, may also be an indication of a stance adopted by a news agency.


Scientific Reports | 2016

KCTD12 Regulates Colorectal Cancer Cell Stemness through the ERK Pathway

Liping Li; Tingmei Duan; Xin Wang; Ru Hua Zhang; Meifang Zhang; Suihai Wang; Fen Wang; Yuanzhong Wu; Haojie Huang; Tiebang Kang

Targeting cancer stem cells (CSCs) in colorectal cancer (CRC) remains a difficult problem, as the regulation of CSCs in CRC is poorly understood. Here we demonstrated that KCTD12, potassium channel tetramerization domain containing 12, is down-regulated in the CSC-like cells of CRC. The silencing of endogenous KCTD12 and the overexpression of ectopic KCTD12 dramatically enhances and represses CRC cell stemness, respectively, as assessed in vitro and in vivo using a colony formation assay, a spheroid formation assay and a xenograft tumor model. Mechanistically, KCTD12 suppresses CRC cell stemness markers, such as CD44, CD133 and CD29, by inhibiting the ERK pathway, as the ERK1/2 inhibitor U0126 abolishes the increase in expression of CRC cell stemness markers induced by the down-regulation of KCTD12. Indeed, a decreased level of KCTD12 is detected in CRC tissues compared with their adjacent normal tissues and is an independent prognostic factor for poor overall and disease free survival in patients with CRC (p = 0.007). Taken together, this report reveals that KCTD12 is a novel regulator of CRC cell stemness and may serve as a novel prognostic marker and therapeutic target for patients with CRC.


Cancer Research | 2016

CBX4 Suppresses Metastasis via Recruitment of HDAC3 to the Runx2 Promoter in Colorectal Carcinoma

Xin Wang; Liping Li; Yuanzhong Wu; Ruhua Zhang; Meifang Zhang; Dan Liao; Gang Wang; Ge Qin; Rui Hua Xu; Tiebang Kang

Polycomb chromobox (CBX) proteins participate in the polycomb repressive complex (PRC1) that mediates epigenetic gene silencing and endows PRC1 with distinct oncogenic or tumor suppressor functions in a cell-type-dependent manner. In this study, we report that inhibition of cell migration, invasion, and metastasis in colorectal carcinoma requires CBX4-mediated repression of Runx2, a key transcription factor that promotes colorectal carcinoma metastasis. CBX4 inversely correlated with Runx2 expression in colorectal carcinoma tissues, and the combination of high CBX4 expression and low Runx2 expression significantly correlated with overall survival, more so than either CBX4 or Runx2 expression alone. Mechanistically, CBX4 maintained recruited histone deacetylase 3 (HDAC3) to the Runx2 promoter, which maintained a deacetylated histone H3K27 state to suppress Runx2 expression. This function of CBX4 was dependent on its interaction with HDAC3, but not on its SUMO E3 ligase, its chromodomain, or the PRC1 complex. Disrupting the CBX4-HDAC3 interaction abolished Runx2 inhibition as well as the inhibition of cell migration and invasion. Collectively, our data show that CBX4 may act as a tumor suppressor in colorectal carcinoma, and strategies that stabilize the interaction of CBX4 with HDAC3 may benefit the colorectal carcinoma patients with metastases. Cancer Res; 76(24); 7277-89. ©2016 AACR.

Collaboration


Dive into the Meifang Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Q. Su

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ruhua Zhang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ting-Yu Yi

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar

Wen-Huo Chen

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan-Min Wu

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Wang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge