Meike Burger
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meike Burger.
Oncogene | 2003
Meike Burger; Aleksandra M. Glodek; Tanja Nicole Hartmann; Anette Schmitt-Gräff; Leslie E. Silberstein; Nobutaka Fujii; Thomas J. Kipps; Jan A. Burger
Small-cell lung cancer (SCLC) is an aggressive, rapidly metastasizing neoplasm. The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) is constitutively secreted by marrow stromal cells and plays a key role for homing of hematopoietic cells to the marrow. Here, we report that tumor cells from patients with SCLC express high levels of functional CXCR4 receptors for the chemokine CXCL12. Reverse transcriptase–polymerase chain reaction and flow cytometry demonstrated CXCR4 mRNA and CXCR4 surface expression in SCLC cell lines. Immunohistochemistry of primary tumor samples from SCLC patients revealed high expression of CXCR4. CXCL12 elicited CXCR4 receptor endocytosis, actin polymerization, and a robust activation of phospho-p44/42 mitogen-activated protein kinase in SCLC cells. Furthermore, CXCL12 induced SCLC cell invasion into extracellular matrix and firm adhesion to marrow stromal cells. Stromal cell adhesion of SCLC cells was significantly inhibited by the specific CXCR4 antagonist T140, pertussis toxin, antivascular cell adhesion molecule-1(VCAM-1) antibodies, and CS-1 peptide, demonstrating the importance of CXCR4 chemokine receptor activation and α4β1 integrin binding, respectively. In addition, CXCL12 enhanced the adhesion of SCLC cells to immobilized VCAM-1, demonstrating that CXCR4 chemokine receptors can induce integrin activation on SCLC cells. As SCLC has a high propensity for bone marrow involvement, our findings suggest that CXCR4 chemokine receptors and α4β1 integrins play a critical role in the interaction of SCLC cells with stromal cells in the tumor microenvironment.
Oncogene | 2005
Tanja Nicole Hartmann; Jan A. Burger; Aleksandra M. Glodek; Nobutaka Fujii; Meike Burger
Small cell lung cancer (SCLC) is an aggressive, rapidly metastazising neoplasm with a high propensity for marrow involvement. SCLC cells express high levels of functional CXCR4 receptors for the chemokine stromal-cell-derived factor-1 (SDF-1/CXCL12). Adhesion of SCLC cells to extracellular matrix or accessory cells within the tumor microenvironment confers resistance to chemotherapy via integrin signaling and thus may be responsible for residual disease and relapses commonly seen in SCLC. We examined the signaling mechanisms that regulate CXCL12-induced adhesion of SCLC cells to fibronectin, collagen, and stromal cells and the effects on SCLC cell chemoresistance. We found that CXCL12-induced integrin activation which resulted in an increased adhesion of SCLC cells to fibronectin and collagen. This was mediated by α2, α4, α5, and β1 integrins along with CXCR4 activation, which could be inhibited by CXCR4 antagonists. Stromal cells protected SCLC cells from chemotherapy-induced apoptosis, and this protection could also be antagonized by CXCR4 inhibitors. We conclude that activation of integrins and CXCR4 chemokine receptors co-operate in mediating adhesion and survival signals from the tumor microenvironment to SCLC cells. Therefore, CXCR4 antagonists in combination with cytotoxic drugs should be explored in SCLC to overcome CXCL12-mediated adhesion and survival signals in the tumor microenvironment.
Blood | 2010
Maike Buchner; Constance Baer; Gabriele Prinz; Christine Dierks; Meike Burger; T Zenz; Stephan Stilgenbauer; Hassan Jumaa; Hendrik Veelken; Katja Zirlik
The microenvironment provides essential growth and survival signals to chronic lymphocytic leukemia (CLL) cells and contributes to their resistance to cytotoxic agents. Pharmacologic inhibition of spleen tyrosine kinase (SYK), a key mediator of B-cell receptor (BCR) signaling, induces apoptosis in primary CLL cells and prevents stroma contact-mediated cell survival. This report demonstrates a role of SYK in molecularly defined pathways that mediate the CLL-microenvironmental crosstalk independent from the BCR. Chemokine and integrin stimulation induced SYK phosphorylation, SYK-dependent Akt phosphorylation, and F-actin formation in primary CLL cells. Inhibition of SYK by 2 pharmacologic inhibitors and siRNA-knockdown abrogated downstream SYK signaling and morphologic changes induced by these stimuli. CLL cell migration toward CXCL12, the major homing attractor, and CLL cell adhesion to VCAM-1, a major integrin ligand expressed on stromal cells, were markedly reduced by SYK inhibition. In combination with fludarabine, the SYK inhibitor R406 abrogated stroma-mediated drug resistance by preventing up-regulation of the antiapoptotic factor Mcl-1 in CLL cells. SYK blockade in CLL is a promising therapeutic principle not only for its inhibition of the BCR signaling pathway, but also by inhibiting protective stroma signals in a manner entirely independent of BCR signaling.
Cancer Research | 2009
Maike Buchner; Simon Fuchs; Gabriele Prinz; Dietmar Pfeifer; Kilian Bartholomé; Meike Burger; Nina Chevalier; Laurent Vallat; Jens Timmer; John G. Gribben; Hassan Jumaa; Hendrik Veelken; Christine Dierks; Katja Zirlik
B-cell receptor signaling contributes to apoptosis resistance in chronic lymphocytic leukemia (CLL), limiting the efficacy of current therapeutic approaches. In this study, we investigated the expression of spleen tyrosine kinase (SYK), a key component of the B-cell receptor signaling pathway, in CLL and its role in apoptosis. Gene expression profiling identified enhanced expression of SYK and downstream pathways in CLL compared with healthy B cells. Immunoblotting showed increased expression and phosphorylation of SYK, PLCgamma(2), signal transducers and activators of transcription 3, and extracellular signal regulated kinase 1/2 in CLL compared with healthy B cells, suggesting enhanced activation of these mediators in CLL. SYK inhibitors reduced phosphorylation of SYK downstream targets and induced apoptosis in primary CLL cells. With respect to prognostic factors, SYK inhibitors exerted stronger cytotoxic effects in unmutated and ZAP70(+) cases. Cytotoxic effects of SYK inhibitors also associated with SYK protein expression, potentially predicting response to therapy. Combination of fludarabine with SYK Inhibitor II or R406 increased cytotoxicity compared with fludarabine therapy alone. We observed no stroma-contact-mediated drug resistance for SYK inhibitors as described for fludarabine treatment. CD40 ligation further enhanced efficacy of SYK inhibition. Our data provide mechanistic insight into the recently observed therapeutic effects of the SYK inhibitor R406 in CLL. Combination of SYK inhibitors with fludarabine might be a novel treatment option particularly for CLL patients with poor prognosis and should be further evaluated in clinical trials.
Pancreas | 2000
Hiroshi Takamori; Zenaida G. Oades; Robert C. Hoch; Meike Burger; Ingrid U. Schraufstatter
A human pancreatic cancer cell line, Capan-1, secretes the chemokines interleukin-8 (IL-8) and growth-related oncogene alpha (GRO&agr;). Capan-1 cells also express the chemokine receptor 2 (CXCR2), which is a Gi&agr;-protein coupled receptor. Growth of Capan-1 cells was inhibited when anti-IL-8 or anti-GRO&agr; monoclonal antibody was added into the culture medium. Pertussis toxin, which blocks Gi&agr; also demonstrated a growth-inhibitory effect on Capan-1 cells. These results indicated that IL-8 and GRO&agr; act on Capan-1 cells as growth factors in an autocrine manner through CXCR2.
Oncogene | 2005
Meike Burger; Tanja Nicole Hartmann; Jan A. Burger; Ingrid U. Schraufstatter
The Kaposi’s sarcoma herpesvirus encodes a G-protein-coupled chemokine receptor termed KSHV-GPCR. Expression of this constitutively active GPCR leads to cell transformation and vascular overgrowth characteristic of Kaposis sarcoma. Previously, we have shown that CXCR2, the closest human homolog, is similarly able to transform cells if continuously stimulated or constitutively activated by amino-acid exchange D138V of the DRY sequence. Here, we demonstrate that STAT3 activation is a prerequisite for transformation in KSHV-GPCR and CXCR2 transfected NIH 3T3 cells. In KSHV-GPCR and D138V transfected cells, STAT-3 is constitutively phosphorylated on Tyr705. In CXCR2 transfected NIH 3T3 cells and human microvascular endothelial cells (HMEC), which express the CXCR2 constitutively, STAT3 is phosphorylated upon stimulation with IL-8 (CXCL8). Focus formation in NIH 3T3 cells transfected with the KSHV-GPCR, CXCR2, or the D138V mutant, was blocked by the specific JAK2 inhibitor AG490. Typical functions of the CXCR2 including actin stress fiber formation, haptotaxis, and the angiogenic response in HMEC shown by tube formation in Matrigel were blocked by AG490. These data suggest that the transforming capacity and migratory responses that are involved in tumor development, metastasis, and angiogenesis in KSHV or CXCR2-expressing cells is at least partially mediated through a JAK2-STAT3 dependent pathway.
Journal of Immunology | 2003
Ingrid U. Schraufstatter; Khanh Trieu; Ming Zhao; David M. Rose; Robert Terkeltaub; Meike Burger
Microvascular endothelial cells (HMECs) express both the CXCR1 and the CXCR2, but cell migration is almost entirely mediated by the CXCR2. Similarly, NIH 3T3 cells transfected with the CXCR2 migrated toward IL-8, whereas CXCR1-transfected cells failed to do so. This situation differs from that seen in leukocytes, where chemotaxis is primarily a function of the CXCR1. To define signal transduction pathways that explain this difference in behavior, various inhibitors were used to block cell migration. Apart from inhibitors of phosphatidylinositol 3-kinase, which blocked migration in all cases, inhibition of the epidermal growth factor (EGF) receptor blocked IL-8-mediated cell migration in HMECs and in CXCR2-transfected NIH 3T3 cells, but not in RBL2H3 cells, which do not express an EGFR. Blocking Abs against the EGFR or against heparin-binding EGF-like growth factor similarly blocked IL-8-mediated cell migration and in vitro tubulogenesis in HMECs. Furthermore, inhibition of the EGFR also attenuated focus formation in NIH 3T3 expressing the CXCR2. Immunoprecipitations of the EGFR in HMECs and in NIH 3T3 cells expressing the CXCR2 confirmed that the EGFR was phosphorylated following stimulation with IL-8. However, in contrast to previous reports, e.g., for the thrombin receptor, inhibition of matrix metalloproteases blocked IL-8-mediated cell migration only partially, whereas it was ablated by inhibition of cathepsin B. These results indicate that IL-8-induced transactivation of the EGFR is mediated by the CXCR2 and involves cathepsin B, and that this pathway is important for the migratory and tumorigenic effects of IL-8.
British Journal of Haematology | 2003
Jan A. Burger; Anke Spoo; Anne Dwenger; Meike Burger; Dirk Behringer
Summary. Marrow stromal cells play an important role in regulating the development and proliferation of haematopoietic stem cells (HSC) within the marrow microenvironment. However, the molecular mechanisms of stem cell–stromal cell interactions are not fully understood. We observed that mobilized peripheral blood and cord‐blood‐derived CD34+ progenitor cells, or CD34+ acute myeloid leukaemia (AML) cells spontaneously migrated beneath marrow stromal cells, an in vitro migration phenomenon termed pseudoemperipolesis. In contrast, the CD34+ myeloid leukaemia cell line, Kasumi‐1, did not display pseudoemperipolesis. Cord blood CD34+ cells had a higher capacity than granulocyte‐colony‐stimulating‐factor‐mobilized CD34+ cells for pseudoemperipolesis (28·7 ± 12%vs 18·1 ± 6·1% of input cells within 24 h, mean ± SD, n = 8), whereas 9·4 ± 12·6% (mean ± SD, n = 10) of input AML cells displayed this phenomenon. Pseudoemperipolesis of CD34+ progenitor and AML cells was significantly inhibited by pertussis toxin and antibodies to the CXCR4 chemokine receptor (CXCR4, CD184), but not control antibodies. Moreover, CD34+ and AML cell migration was significantly inhibited by a CS1 peptide that blocks α4β1 integrin binding, but not by a control peptide, in which the fibronectin binding motif was scrambled. Pseudoemperipolesis was associated with an increased proliferation of migrated CD34+ progenitor cells but not AML cells within the stromal layer, demonstrated by cell cycle analysis and cell division tracking. We conclude that α4β1 integrin binding and CXCR4 chemokine receptor activation are prerequisites for the migration of CD34+ haematopoietic progenitors and AML cells beneath marrow stromal cells. These observations suggest a central role of marrow stromal cells for HSC trafficking and homing within the marrow microenvironment.
Cancer Research | 2009
Tanja Nicole Hartmann; Valentin Grabovsky; Wei Wang; Petra Desch; Gabriele Rubenzer; Stefan Wollner; Inbal Binsky; Alexandra Vallon-Eberhard; Anita Sapoznikov; Meike Burger; Idit Shachar; Michal Haran; Marek Honczarenko; Richard Greil; Ronen Alon
Homing to secondary lymphoid organs and bone marrow (BM) is a central aspect of leukemic pathophysiology. We investigated the roles of the two major lymphocyte integrins LFA-1 and VLA-4 on B-cell chronic lymphocytic leukemia (CLL) cells in these processes. We found that the majority of CLL cells expressed significantly reduced LFA-1 due to low beta2 integrin transcripts. VLA-4 expression was heterogeneous but underwent rapid activation by the BM chemokine CXCL12. CLL cells failed to transmigrate across VCAM-1-expressing, ICAM-1-expressing, and CXCL12-expressing endothelium, whereas when LFA-1 expression was regained in subsets of CLL cells, these lymphocytes rapidly transmigrated the endothelium. Furthermore, when injected into tail veins of immunodeficient mice, normal B cells rapidly homed to lymph nodes (LN) in a LFA-1-dependent manner, whereas CLL cells did not. Nevertheless, only residual CLL subsets could reenter BM, whereas both normal and CLL cells homed to the mice spleen in an LFA-1-independent and VLA-4-independent manner. Our results suggest that CLL cells have a reduced capacity to adhere and transmigrate through multiple vascular endothelial beds and poorly home to lymphoid organs other than spleen. Integrin blocking could thus be an efficient strategy to prevent circulating CLL cells from reaching prosurvival niches in LNs and BM but not in spleen.
Immunology | 2010
Marion Leick; Julie Catusse; Marie Follo; Robert J. B. Nibbs; Tanja Nicole Hartmann; Hendrik Veelken; Meike Burger
The human chemokine receptor CRAM (chemokine receptor on activated macrophages), encoded by the gene CCRL2, is a new candidate for the atypical chemokine receptor family that includes the receptors DARC, D6 and chemocentryx chemokine receptor (CCX‐CKR). CRAM is maturation‐stage‐dependently expressed on human B lymphocytes and its surface expression is up‐regulated upon short‐term CCL5 exposure. Here, we demonstrate that the homeostatic chemokine CCL19 is a specific ligand for CRAM. In radioactive labelling studies CCL19 bound to CRAM‐expressing cells with an affinity similar to the described binding of its other receptor CCR7. In contrast to the known CCL19/CCR7 ligand/receptor pair, CRAM stimulation by CCL19 did not result in typical chemokine‐receptor‐dependent cellular activation like calcium mobilization or migration. Instead, we demonstrate that CRAM is constitutively recycling via clathrin‐coated pits and able to internalize CCL19 as well as anti‐CRAM antibodies. As this absence of classical chemokine receptor responses and the recycling and internalization features are characteristic for non‐classical chemokine receptors, we suggest that CRAM is the newest member of this group. As CCL19 is known to be critically involved in lymphocyte and dendritic cell trafficking, CCL19‐binding competition by CRAM might be involved in modulating these processes.