Meike Hutt
University of Stuttgart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meike Hutt.
Journal of Biological Chemistry | 2012
Meike Hutt; Aline Färber-Schwarz; Felix Unverdorben; Fabian Richter; Roland E. Kontermann
Background: Half-life extension has become increasingly important for therapeutic proteins. Results: Fusion of different bacterial immunoglobulin-binding domains to small recombinant antibodies prolonged their half-life to varying extents. Conclusion: Fusion of domain C3 of streptococcal protein G showed the best effects, thus representing a promising module for half-life extension of small-sized therapeutics. Significance: This study further established immunoglobulin-binding domains as suitable half-life extension modules. Many therapeutic proteins possessing a small size are rapidly cleared from circulation. Half-life extension strategies have therefore become increasingly important to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Here, we performed a comparative analysis of the half-life extension properties of various bacterial immunoglobulin-binding domains (IgBDs) derived from Staphylococcus protein A (SpA), Streptococcus protein G (SpG), and Finegoldia (formerly Peptostreptococcus) protein L (PpL). These domains, composed of 50–60 amino acid residues, were fused to the C terminus of a single-chain Fv and a bispecific single-chain diabody, respectively. All fusion proteins were produced in mammalian cells and retained their antigen-binding properties. The half-lives of the antibody molecules were prolonged to varying extents for the different IgBDs. The strongest effects in mice were observed for domain C3 of SpG (SpGC3) followed by domains B and D of SpA, suggesting that SpGC3 is particularly useful to extend the plasma half-life of small proteins.
Protein Engineering Design & Selection | 2012
Felix Unverdorben; Aline Färber-Schwarz; Fabian Richter; Meike Hutt; Roland E. Kontermann
Binding of a therapeutic protein to a long-circulating plasma protein can result in a strongly extended half-life. Among these plasma proteins, albumin and immunoglobulins are of special interest because of their exceptionally long half-life, which is to a great extent determined by recycling through the neonatal Fc receptor (FcRn). Many strategies have been established employing reversible binding to albumin, e.g. using an albumin-binding domain from streptococcal protein G. We show here that the half-life of a recombinant antibody molecule can also be prolonged by fusion to a single immunoglobulin-binding domain (IgBD) from staphylococcal protein A. This domain (domain B, SpA(B)) is composed of 56 amino acid residues and was fused to the C-terminus of a bispecific single-chain diabody (scDb). The scDb-SpA(B) fusion protein was produced in HEK293 cells and retained its antigen-binding activity as shown by enzyme-linked immunosorbent assay and flow cytometry. Furthermore, the fusion protein was capable of binding to human and mouse IgG in a pH-dependent manner. In mice, the terminal half-life of the fusion protein was improved from ∼1-2 h of the unmodified scDb to 11.8 h. Although the fusion protein did not reach the long half-life seen for IgG, our results established the applicability of a single bacterial IgBD for half-life extension purposes.
mAbs | 2016
Felix Unverdorben; Fabian Richter; Meike Hutt; Oliver Seifert; Pauline Malinge; Nicolas Fischer; Roland E. Kontermann
Fusion to an IgG Fc region is an established strategy to extend the half-life of therapeutic proteins. Most Fc fusion proteins, however, do not achieve the long half-life of IgGs. Based on findings that scFv-Fc fusion proteins exhibit a shorter half-life than the corresponding IgG molecules, we performed a comparative study of different antibody-derived Fc fusion proteins. We could confirm that fusion of single-chain Fv (scFv) and single-chain diabody (scDb) molecules to an Fc region yields in fusion proteins with substantially extended half-lives compared with the single-chain versions. However, even fusion proteins with a size similar to that of IgG, e.g., scDb-Fc, did not have a half-life as long as an IgG molecule. Binding to the neonatal Fc receptor (FcRn) under acidic and neutral conditions was similar for IgG and all Fc fusion proteins. However, we observed differences between IgG and the Fc fusion proteins for dissociation of FcRn-bound proteins induced by shifting from acidic to neutral pH, reflecting the physiological release mechanism, further supporting a contribution of the kinetics of pH-dependent release from FcRn to the pharmacokinetic properties of IgG and Fc fusion proteins.
PLOS ONE | 2015
Felix Unverdorben; Meike Hutt; Oliver Seifert; Roland E. Kontermann
Background Half-life extension strategies have gained increasing interest to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Recently, we established an immunoglobulin-binding domain (IgBD) from streptococcal protein G (SpGC3) as module for half-life extension. SpGC3 is capable of binding to the Fc region as well as the CH1 domain of Fab arms under neutral and acidic conditions. Methodology/Principal Findings Using site-directed mutagenesis, we generated a Fab-selective mutant (SpGC3Fab) to avoid possible interference with the FcRn-mediated recycling process and improved its affinity for mouse and human IgG by site-directed mutagenesis and phage display selections. In mice, this affinity-improved mutant (SpGC3FabRR) conferred prolonged plasma half-lives compared with SpGC3Fab when fused to small recombinant antibody fragments, such as single-chain Fv (scFv) and bispecific single-chain diabody (scDb). Hence, the SpGC3FabRR domain seems to be a suitable fusion partner for the half-life extension of small recombinant therapeutics. Conclusions/Significance The half-life extension properties of SpGC3 can be retained by restricting binding to the Fab fragment of serum immunoglobulins and can be improved by increasing binding activity. The modified SpGC3 module should be suitable to extend the half-life of therapeutic proteins and, thus to improve therapeutic activity.
Molecular Cancer Therapeutics | 2017
Meike Hutt; Lisa Marquardt; Oliver Seifert; Martin Siegemund; Ines Müller; Dagmar Kulms; Klaus Pfizenmaier; Roland E. Kontermann
The TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising molecule for cancer treatment. However, clinical studies with soluble TRAIL failed to show therapeutic activity, which resulted in subsequent development of more potent TRAIL-based therapeutics. In this study, we applied defined oligomerization and tumor targeting as strategies to further improve the activity of a single-chain version of TRAIL (scTRAIL). We compared three different formats of EGF receptor (EGFR)-targeting dimeric scTRAIL fusion proteins [Diabody (Db)-scTRAIL, scFv-IgE heavy chain domain 2 (EHD2)-scTRAIL, scFv-Fc-scTRAIL] as well as two nontargeted dimeric scTRAIL molecules (EHD2-scTRAIL, Fc-scTRAIL) to reveal the influence of targeting and protein format on antitumor activity. All EGFR-targeted dimeric scTRAIL molecules showed similar binding properties and comparable cell death induction in vitro, exceeding the activity of the respective nontargeted dimeric format and monomeric scTRAIL. Superior properties were observed for the Fc fusion proteins with respect to production and in vivo half-life. In vivo studies using a Colo205 xenograft model revealed potent antitumor activity of all EGFR-targeting formats and Fc-scTRAIL and furthermore highlighted the higher efficacy of fusion proteins comprising an Fc part. Despite enhanced in vitro cell death induction of targeted scTRAIL molecules, however, comparable antitumor activities were found for the EGFR-targeting scFv-Fc-scTRAIL and the nontargeting Fc-scTRAIL in vivo. Mol Cancer Ther; 16(12); 2792–802. ©2017 AACR.
Frontiers in Immunology | 2017
Irene Marini; Martin Siegemund; Meike Hutt; Roland E. Kontermann; Klaus Pfizenmaier
Mesenchymal stem cells (MSCs) are currently exploited as gene delivery systems for transient in situ expression of cancer therapeutics. As an alternative to the prevailing viral expression, we here describe a murine MSC line stably expressing a therapeutic protein for up to 42 passages, yet fully maintaining MSC features. Because of superior antitumoral activity of hexavalent TNF-related apoptosis-inducing ligand (TRAIL) formats and the advantage of a tumor-targeted action, we choose expression of a dimeric EGFR-specific diabody single-chain TRAIL (Db-scTRAIL) as a model. The bioactivity of Db-scTRAIL produced from an isolated clone (MSC.TRAIL) was revealed from cell death induction in Colo205 cells treated with either culture supernatants from or cocultured with MSC.TRAIL. In vivo, therapeutic activity of MSC.TRAIL was shown upon peritumoral injection in a Colo205 xenograft tumor model. Best antitumor activity in vitro and in vivo was observed upon combined treatment of MSC.TRAIL with bortezomib. Importantly, in vivo combination treatment did not cause apparent hepatotoxicity, weight loss, or behavioral changes. The development of well characterized stocks of stable drug-producing human MSC lines has the potential to establish standardized protocols of cell-based therapy broadly applicable in cancer treatment.
Journal of Biomolecular Structure & Dynamics | 2012
Meike Hutt; Tobias Kulschewski; Jürgen Pleiss
Using molecular dynamics (MD) simulations, the density of single proteins and its temperature dependence was modelled starting from the experimentally determined protein structure and a generic, transferable force field, without the need of prior parameterization. Although all proteins consist of the same 20 amino acids, their density in aqueous solution varies up to 10% and the thermal expansion coefficient up to twofold. To model the protein density, systematic MD simulations were carried out for 10 proteins with a broad range of densities (1.32–1.43 g/cm3) and molecular weights (7–97 kDa). The simulated densities deviated by less than 1.4% from their experimental values that were available for four proteins. Further analyses of protein density showed that it can be essentially described as a consequence of amino acid composition. For five proteins, the density was simulated at different temperatures. The simulated thermal expansion coefficients ranged between 4.3 and 7.1 × 10−4 K−1 and were similar to the experimentally determined values of ribonuclease-A and lysozyme (deviations of 2.4 and 14.6%, respectively). Further analyses indicated that the thermal expansion coefficient is linked to the temperature dependence of atomic fluctuations: proteins with a high thermal expansion coefficient show a low increase in flexibility at increasing temperature. A low increase in atomic fluctuations with temperature has been previously described as a possible mechanism of thermostability. Thus, a high thermal expansion coefficient might contribute to protein thermostability.
Oncotarget | 2018
Meike Hutt; Sina Fellermeier-Kopf; Oliver Seifert; Lisa C. Schmitt; Klaus Pfizenmaier; Roland E. Kontermann
Fusion proteins combining hexavalent TRAIL with antibody fragments allow for a targeted delivery and efficient apoptosis induction in tumor cells. Here, we analyzed scFv-Fc-scTRAIL molecules directed against EGFR, HER2, HER3, and EpCAM as well as an untargeted Fc-scTRAIL fusion protein for their potentials to induce cell death both in vitro and in a xenograft tumor model in vivo. The scFv-Fc-scTRAIL fusion protein directed against EGFR as well as the fusion protein directed against EpCAM showed targeting effects on the two tested colorectal carcinoma cell lines Colo205 and HCT116, while a fusion protein targeting HER3 was more effective than untargeted Fc-scTRAIL only on Colo205 cells. Interestingly, another anti-HER3 scFv-Fc-scTRAIL fusion protein exhibiting approximately 10-fold weaker antigen binding as well as the HER2-directed molecule were unable to increase cytotoxicity compared to Fc-scTRAIL. A comparison of EC50 values of cell death induction and antigen binding supports the assumption that high affinity antigen binding is one of the requirements for in vitro targeting effects. Furthermore, a minimal number of expressed target antigens might be required for increased cytotoxicity of targeted compared to non-targeted molecules. In a Colo205 s.c. xenograft tumor model, strongest antitumor activity was observed for the anti-HER3 scFv-Fc-scTRAIL fusion protein based on antibody 3-43, with complete tumor remissions after six twice-weekly injections. Surprisingly, a similar in vivo activity was also observed for untargeted Fc-scTRAIL in this tumor model, indicating that additional factors contribute to the potent efficacy of targeted as well as untargeted hexavalent Fc-scTRAIL fusion proteins in vivo.
mAbs | 2017
Lisa C. Schmitt; Alexander Rau; Oliver Seifert; Jonas Honer; Meike Hutt; Simone Schmid; Jonas Zantow; Michael Hust; Stefan Dübel; Monilola A. Olayioye; Roland E. Kontermann
ABSTRACT Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3–43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3–43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3–43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo.
Scientific Reports | 2018
Martin Siegemund; Felix Schneider; Meike Hutt; Oliver Seifert; Ines Müller; Dagmar Kulms; Klaus Pfizenmaier; Roland E. Kontermann
Single-chain formats of TNF-related apoptosis inducing ligand (scTRAIL) can serve as effector components of tumour-associated antigen-targeted as well as non-targeted fusion proteins, being characterized by high tumour cell-specific induction of apoptosis through death receptor activation. We studied the suitability of immunoglobulin G as a scaffold for oligovalent and bispecific TRAIL fusion proteins. Thus, we developed novel targeted hexa- and dodecavalent IgG-scTRAIL molecules by fusing scTRAIL to the C-terminus of either light (LC-scTRAIL) or heavy immunoglobulin chain (HC-scTRAIL), or to both ends (LC/HC-scTRAIL) of the anti-EGFR IgG antibody hu225. The binding specificity to EGFR and death receptors was retained in all IgG-scTRAIL formats and translated into high antigen-specific bioactivity on EGFR-positive Colo205, HCT116 and WM1366 tumour cell lines, with or without sensitization to apoptosis by bortezomib. In vivo, therapeutic potential was assessed for one of the targeted variants, HC-scTRAIL, compared to the non-targeted Fc-scTRAIL. Both molecules showed a significant reduction of tumour volume and synergism with a Smac mimetic in a Colo205 xenograft tumour model. The IgG-scTRAIL format allows directing a defined, highly bioactive form of TRAIL to a wide variety of tumour antigens, enabling customized solutions for a patient-specific targeted cancer therapy with a reduced risk of side effects.