Meike M. Mostegl
University of Veterinary Medicine Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meike M. Mostegl.
The FASEB Journal | 2008
Christoph Metzner; Meike M. Mostegl; Walter H. Günzburg; Brian Salmons; John A. Dangerfield
We describe for the first time the association of glycosylphosphatidylinositol (GPI) ‐anchored proteins with retroviral and lentiviral particles, similar to a process well established for cells, termed “painting.” The aim of the study was to assess the feasibility of modification of retroviral vectors by exogenous addition of recombinant protein, removing the need for genetic engineering of virus producer cell lines. The recombinant GPI protein CD59his was purified via fast protein liquid chromatography and associated with concentrated virus stock in a controlled incubation procedure. Reaction mixtures were purified in order to remove nonassociated GPI protein and endogenous protein. Analysis of samples by immunoblotting revealed that CD59his was only detectable in the presence of viral particles. From this, we conclude that CD59his could be stably associated with retroviral particles. In addition, we demonstrated by flow cytometry that virus particles remain infectious after these procedures. As well as suggesting a novel possibility for interaction between enveloped virus and host, we believe that the stable association of recombinant GPI proteins to retroviral particles can be developed into an important tool for both research and clinical applications, especially in the fields of gene therapy and vaccine development.—Metzner, C., Mostegl, M. M., Günzburg, W. H., Salmons, B., Dangerfield, J. A. Association of glycosylphosphatidylinositol‐anchored protein with retroviral particles. FASEB J. 22, 2734–2739 (2008)
Veterinary Parasitology | 2011
Meike M. Mostegl; Barbara Richter; Nora Nedorost; Anton Maderner; Nora Dinhopl; Herbert Weissenböck
In pigs, three different trichomonad species (Tritrichomonas foetus, Tetratrichomonas buttreyi and Tritrichomonas rotunda) have been described as commensals in the large intestine. The aim of this study was to gain further knowledge on the prevalence and pathogenicity of trichomonads in pigs by using a morphology-based approach. Chromogenic in situ hybridization (ISH) is a technique which allows direct localization of the protozoa in the intestinal tissue and correlation of the infection with pathologic changes. In the present study paraffin-wax embedded colon and ileum samples of 192 pigs were analyzed with this method. Using a probe specific for all known members of the order Trichomonadida (OT) 100 of the 192 pigs were tested positive. Thereof, about 10% showed moderate to high-grade parasitic load with trichomonads invading the lamina propria. Partial 18S ribosomal RNA gene sequencing of six of those animals showed a 100% sequence identity with T. foetus sequences. The majority of these animals were also tested positive for other enteropathogenic agents, such as Brachyspira sp., Lawsonia intracellularis, Escherichia coli, and porcine circovirus type 2. All OT-positive samples were further examined with another probe complementary to all known Tritrichomonas species sequences including T. foetus, T. augusta, T. mobilensis and T. nonconforma resulting in only 48 positives. These results suggest that T. foetus may not only be considered as an intestinal commensal but rather a facultative pathogen of pigs with a tendency for tissue invasion in the presence of other agents. Furthermore, the existence of other – yet to be identified – trichomonad species in the colon of pigs was shown.
Veterinary Parasitology | 2010
Meike M. Mostegl; Barbara Richter; Nora Nedorost; Anton Maderner; Nora Dinhopl; Jaroslav Kulda; Dieter Liebhart; Michael Hess; Herbert Weissenböck
Infections with protozoal parasites of the order Trichomonadida are often observed in veterinary medicine. Based on the trichomonad species involved these infections are either asymptomatic or can lead to sometimes serious disease. To further study protozoal agents of the order Trichomonadida the establishment of a method to detect trichomonads directly in the tissue, allowing parasite-lesion correlation, is necessary. Here we describe the design and evaluation of an oligonucleotide probe for chromogenic in situ hybridization, theoretically allowing detection of all hitherto known members of the order Trichomonadida. The probe was designed on a region of the 18S ribosomal RNA gene homologue for all representatives of the order Trichomonadida available in the GenBank. Functionality of the probe was proven using protozoal cultures containing different trichomonads (Monocercomonas colubrorum, Hypotrichomonas acosta, Pentatrichomonas hominis, Trichomitus batrachorum, Trichomonas gallinae, Tetratrichomonas gallinarum, Tritrichomonas foetus, and Tritrichomonas augusta). Furthermore, three different tissue sections containing either T. gallinae, T. foetus or Histomonas meleagridis were tested positive. Additionally, to rule out cross-reactivity of the probe a large number of different pathogenic protozoal agents, fungi, bacteria and viruses were tested and gave negative results. The probe presented here can be considered an important tool for diagnosis of all to date described relevant protozoal parasites of the order Trichomonadida in tissue samples.
Avian Pathology | 2011
Nora Dinhopl; Meike M. Mostegl; Barbara Richter; Nora Nedorost; Anton Maderner; Karin Fragner; Herbert Weissenböck
In captive penguins, avian malaria due to Plasmodium parasites is a well-recognized disease problem as these protozoa may cause severe losses among valuable collections of zoo birds. In blood films from naturally infected birds, identification and differentiation of malaria parasites based on morphological criteria are difficult because parasitaemia is frequently light and blood stages, which are necessary for identification of parasites, are often absent. Post-mortem diagnosis by histological examination of tissue samples is sometimes inconclusive due to the difficulties in differentiating protozoal tissue stages from fragmented nuclei in necrotic tissue. The diagnosis of avian malaria would be facilitated by a technique with the ability to specifically identify developmental stages of Plasmodium in tissue samples. Thus, a chromogenic in-situ hybridization (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 18S rRNA, was developed for the detection of Plasmodium parasites in paraffin wax-embedded tissues. This method was validated in comparison with traditional techniques (histology, polymerase chain reaction), on various tissues from 48 captive penguins that died at the zoological garden Schönbrunn, Vienna, Austria. Meronts of Plasmodium gave clear signals and were easily identified using ISH. Potential cross-reactivity of the probe was ruled out by the negative outcome of the ISH against a number of protozoa and fungi. Thus, ISH proved to be a powerful, specific and sensitive tool for unambiguous detection of Plasmodium parasites in paraffin wax-embedded tissue samples.
Veterinary Microbiology | 2010
Herbert Weissenböck; Karin Fragner; Nora Nedorost; Meike M. Mostegl; Karin Sekulin; Anton Maderner; Tamás Bakonyi; Norbert Nowotny
Proventricular dilatation disease (PDD) of psittacine birds is caused by a number of different genotypes of a novel viral species, avian bornavirus (ABV). Here we present an in situ hybridization (ISH) procedure using digoxigenin-labeled RNA probes for localizing viral genomic and mRNA of ABV-2 and ABV-4 in tissues of affected birds. Out of eleven immunohistochemically positive birds ISH signals were only found in seven. Partial sequencing of the viral genome had shown that four of them were infected with ABV-2, two with ABV-4 and one had a mixed infection with ABV-2 and ABV-4. ISH signals were present in the brain, in the vegetative nerve system, glandular epithelia and smooth muscle cells of the intestinal tract and in cardiomyocytes. Hybridization signals for viral genome were more abundant than signals for mRNA. As the probes were not strictly genotype-specific, four of the birds had hybridization signals with both, the ABV-2 and ABV-4 probes. The signals achieved with the homologous probes were more intense and more abundant than those resulting from heterologous probes. Taken together, the results of this study show that ISH can be used as a tool for localizing ABV sequences in tissues of birds with PDD and confirm the causative role of ABVs by showing viral replication in affected tissues.
Veterinary Record | 2011
Nora Dinhopl; Meike M. Mostegl; Barbara Richter; Nora Nedorost; Anton Maderner; Karin Fragner; Herbert Weissenböck
The diagnosis of canine leishmaniosis (CanL) is currently predominantly achieved by cytological or histological identification of amastigotes in biopsy samples, demonstration of specific anti-Leishmania antibodies and PCR-based approaches. All these methods have the advantage of being sensitive and more or less specific; nevertheless, most of them also have disadvantages. A chromogenic in situ hybridisation (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 5.8S rRNA was developed for the detection of all species of Leishmania parasites in routinely paraffin wax-embedded canine tissues. This method was validated in comparison with traditional techniques (histology, PCR), on various tissues from three dogs with histological changes consistent with a florid leishmaniosis. Amastigote forms of Leishmania gave clear signals and were easily identified using ISH. Various tissues from 10 additional dogs with clinical suspicion or/and a positive serological test but without histological presence of amastigotes did not show any ISH signals. Potential cross-reactivity of the probe was ruled out by negative outcome of the ISH against selected protozoa (including the related Trypanosoma cruzi) and fungi. Thus, ISH proved to be a powerful tool for unambiguous detection of Leishmania parasites in paraffin wax-embedded tissues.
Avian Pathology | 2010
Barbara Richter; C. Schulze; Jens Kämmerling; Meike M. Mostegl; Herbert Weissenböck
Two Red-breasted Mergansers (Mergus serrator), one Hooded Merganser (Lophodytes cucullatus), and one Common Eider (Somateria mollissima) from a German zoological collection died of necrotizing typhlitis/typhlohepatitis within 2 years. Using a newly established chromogenic in situ hybridization assay, numerous intralesional trophozoites of Tetratrichomonas gallinarum could be detected in formalin-fixed and paraffin-embedded tissues from the caeca and livers of the affected birds. Partial sequencing of the 18S rRNA-gene revealed two unique nucleotide sequences very similar to T. gallinarum strains isolated from avian and human hosts. One turkey kept in the same zoological collection succumbed to histomonosis (blackhead disease) confirmed with chromogenic in situ hybridization at the time of the first duck fatalities. This turkey also harboured T. gallinarum trophozoites within necrotic cell debris in the caecal lumen, which might be epidemiologically related to the T. gallinarum infections in the ducks.
Journal of Veterinary Diagnostic Investigation | 2011
Meike M. Mostegl; Barbara Richter; Nora Dinhopl; Herbert Weissenböck
Chromogenic in situ hybridization (ISH) is a commonly used tool in diagnostic pathology to detect pathogens in formalin-fixed, paraffin-embedded (FFPE) tissue sections. Prolonged formalin fixation time was identified to be a limiting factor for the successful detection of nucleic acid from different pathogens, most probably due to the cross-linking activity of formalin between RNA, DNA, and proteins. Therefore, in the current study, the influence of formalin fixation time on ISH signal intensity of 2 viral (Porcine circovirus-2 [PCV-2] and Porcine respiratory and reproductive virus [PRRSV]) and 2 protozoal agents (Cryptosporidium serpentis and Tritrichomonas sp.) was evaluated. Tissue samples were fixed in 7% neutral buffered formaldehyde solution, and at defined intervals, pieces were embedded in paraffin wax and subjected to pathogen-specific ISH. For all 4 pathogens, the signal intensity remained comparable with the starting ISH signal for different periods of fixation (PCV-2: 6 weeks, PRRSV: 23 weeks, C. serpentis: 55 weeks, Tritrichomonas sp.: 53 weeks). Thereafter, the signal started to decline until loss of nucleic acid detection. The influence of increased proteinase K concentrations for inverting the formalin-induced cross-linking activity was examined compared with the standard protocol. With all 4 infectious agents, a 4-fold proteinase K concentration restored the ISH signals to a level comparable with 1 day of fixation. In conclusion, the influence of prolonged formalin fixation on the intensity of detected ISH signal highly depends on the analyzed infectious agent and the pretreatment protocol.
Veterinary Parasitology | 2012
Meike M. Mostegl; Andreas Wetscher; Barbara Richter; Nora Nedorost; Nora Dinhopl; Herbert Weissenböck
In this retrospective study 102 cats were analyzed for the presence of trichomonads in intestinal tissue sections using chromogenic in situ hybridization (CISH). Two intestinal trichomonad species are described in cats: Pentatrichomonas hominis and Tritrichomonas foetus. While P. hominis is considered a mere commensal, T. foetus has been found to be the causative agent of feline large-bowel diarrhea. For the detection of both agents within intestinal tissue CISH assays using three different probes were performed. In the first CISH run a probe specific for all relevant members of the order Trichomonadida (OT probe) was used. In a second CISH run all positive samples were further examined on three consecutive tissue sections using the OT probe, a probe specific for the family of Tritrichomonadidae (Tritri probe) and a newly designed probe specifically detecting P. hominis (Penta hom probe). In total, four of the 102 cats were found to be positive with the OT probe. Thereof, one cat gave a positive reaction with the P. hominis probe and three cats were positive with the T. foetus probe. All Trichomonas-positive cats were pure-bred and between 8 and 32 weeks of age. In one cat positive for T. foetus large amounts of parasites were found in the gut lumen and invading the intestinal mucosa. The species of the detected trichomonads were confirmed by polymerase chain reaction and nucleotide sequencing of a part of the 18S ribosomal RNA gene. In this study, the usefulness of CISH to detect intestinal trichomonads within feline tissue samples was shown. Additionally, the specific detection of P. hominis using CISH was established. Generally, it was shown that CISH is well suited for detection and differentiation of trichomonosis in retrospective studies using tissue samples.
Veterinary Parasitology | 2012
Meike M. Mostegl; Barbara Richter; Nora Nedorost; Christiane Lang; Anton Maderner; Nora Dinhopl; Herbert Weissenböck
Three different parasites of the phylum Parabasala (Tritrichomonas foetus, Trichomitus rotunda and Tetratrichomonas buttreyi) have been described in pigs. In a previous study (Mostegl et al., 2011) approximately 47% of 91 paraffin wax-embedded intestinal samples of pigs which were Trichomonas-positive by in situ hybridization using a probe with a broad reactivity spectrum contained other species than T. foetus. Out of these, intestinal trichomonads from three pigs (pigs 1–3) were further analyzed by gene sequencing of a part of the 18S ribosomal RNA (rRNA) gene using primer walking. Subsequently, the partial sequences achieved by the different primer pairs were combined to a sequence of about 1000 bp for each trichomonad. In all three pigs unique sequences were acquired which showed only moderate similarities to sequences available in the GenBank. Alignments and the BLAST analysis showed a high degree of homology between sequences of trichomonads from pig 1 and pig 3 with only 1% difference. These sequences were found to be 92% similar to Hypotrichomonas acosta, a trichomonad isolated from squamate reptiles. The trichomonad sequence detected in the intestine of pig 2 showed about 10% nucleotide differences compared to pigs 1 and 3. This sequence was 97% similar to two Trichomitus batrachorum (a frog symbiont) sequences. A phylogenetic analysis using the neighbor-joining and maximum likelihood methods supported the data of the BLAST analysis. These results suggest the presence of at least two as yet undescribed trichomonad species in the intestinal contents of pigs.