Meike Niederhausen
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meike Niederhausen.
Marine and Freshwater Behaviour and Physiology | 2014
Tara L. Maginnis; Meike Niederhausen; Katherine S. Bates; Tai B. White-Toney
Leg autotomy and regeneration can have severe impacts on survival and reproduction, and these impacts may be even more pronounced in animals with multifarious legs, such as decapods. Thus, determining the patterns and frequency of autotomy and regeneration could reveal the effects of these processes on the individual and population level. We investigated whether some legs are lost more often than others and if all legs are equally likely to be regenerated. We sampled nearly 500 purple shore crabs (Hemigrapsus nudus) and showed that (1) most animals are found with at least one injured leg, (2) the patterns of autotomy differ between males and females, and (3) successful claw regeneration is unlikely in both males and females. Future work with H. nudus and other grapsid crabs will elucidate how patterns seen here relate to other developmental and ecological factors.
Journal of Strength and Conditioning Research | 2015
Daniele Conte; Terence G. Favero; Meike Niederhausen; Laura Capranica; Antonio Tessitore
Abstract Conte, D, Favero, TG, Niederhausen, M, Capranica, L, and Tessitore, A. Physiological and technical demands of no dribble game drill in young basketball players. J Strength Cond Res 29(12): 3375–3379, 2015—This study assessed the physiological and technical demands of no dribble game drill (NDGD) in comparison with a regular drill (RD). Twenty-three young basketball players performed RDs and NDGDs in a random order. All basketball rules were followed for RDs, whereas dribbling was not permitted for NDGDs. The independent variable was the drill condition, and the dependent variables were percentage of maximal heart rate (%HRmax), rate of perceived exertion (RPE), Edwards training load (TL), and the following technical actions (TAs): pass (total, correct, wrong, and percent of correct passes), shot (total, scored, missed, and percent of made shots), interception, steal, turnover, and rebound. Wilcoxon signed-rank tests were applied to assess differences between NDGD and RD conditions for each dependent variable, and the level of statistical significance was set at p ⩽ 0.05. Results showed higher values for %HRmax (p = 0.007), Edwards TL (p = 0.006), and RPE (p = 0.027) in NDGD compared with RD condition. Technical action analysis revealed higher values in NDGD than RD for total (p = 0.000), correct (p = 0.000), and wrong pass (p = 0.005), and interception (p = 0.001), whereas no significant differences were found for the other TAs. The main finding of this study was that NDGD condition elicited a greater physiological demand and a higher number of passes and interceptions than the RD one. Basketball coaches should consider the NDGD as a viable method to increase the physiological load of their training sessions and to teach passing skills in a game-based situation.
Biology of Sport | 2017
Daniele Conte; Terence G. Favero; Meike Niederhausen; Laura Capranica; Antonio Tessitore
The aim of this study was to examine the determinants of successful and unsuccessful fast-break (FB) actions in elite and sub-elite basketball games. Fifteen 1st-division (elite) and fifteen 3rd-division (sub-elite) Italian men’s championship games were analysed across two seasons (2012/2013 and 2013/2014). A binary logistic regression analysis was performed, and the fast-break outcome (successful vs. unsuccessful) was adopted as the dependent variable separately in both elite and sub-elite games. FB execution (initiation, advance and completion phases), typology (primary and secondary break) and the number of players involved (equal number or superiority) were used as independent variables. The results showed that the rate of success of FB actions was 63.5% and 59.7% in elite and sub-elite games, respectively. Moreover, successful FBs were more likely to be completed in the lane in relation to unsuccessful ones in both elite and sub-elite games (p<0.05). Finally, descriptive statistics showed that both elite and sub-elite teams executed FBs similarly. This study highlighted that completion zone was the only predictor of a successful fast break in basketball, while the typology and number of players involved did not predict fast break effectiveness. Moreover, elite and sub-elite teams executed fast break actions similarly. These findings might be useful for basketball coaches to optimize the training of FB actions.
Journal of Sports Sciences | 2016
Daniele Conte; Terence G. Favero; Meike Niederhausen; Laura Capranica; Antonio Tessitore
Abstract This study aimed to analyse the effects of two factors (number of players and training regimes) on players’ physiological and technical demands in basketball ball-drills. Twenty-one young basketball players performed four different ball-drills (two levels for each factor). The number of players involved was 2vs2 and 4vs4, while ball-drill regimes were continuous and intermittent. Physiological demand was assessed using the percentage of maximal heart rate (%HRmax), Edwards’ training load and rating of perceived exertion (RPE). Furthermore, the following technical actions were collected: dribbles, steals, rebounds, turnovers, passes (total, correct, wrong and % of correct pass) and shots (total, scored, missed and % of made shot). A 2 × 2 (number of players × regime) two-way ANOVA with repeated measures was applied for physiological parameters and technical actions. The 2vs2 condition showed higher %HRmax (P < 0.001), Edwards’ training load (P < 0.001), RPE (P < 0.001), number of dribbles (P < 0.001), rebounds (P < 0.001), passes [total (P = 0.005) and correct (P = 0.005)] and shots [total (P < 0.001) scored (P < 0.001) and missed (P < 0.001)] than 4vs4. Moreover, the continuous regime revealed higher %HRmax (P < 0.001), Edwards’ training load (P < 0.001), RPE (P = 0.006) and dribbles (P < 0.001) than the intermittent regime. This study showed that both number of players and regime are useful variables able to modify basketball ball-drills workload.
The Journal of Clinical Endocrinology and Metabolism | 2017
Mary H. Samuels; Irina Kolobova; Megan Antosik; Meike Niederhausen; Jonathan Q. Purnell; Kathryn G. Schuff
Purpose It is not clear whether upper limits of the thyrotropin (TSH) reference range should be lowered. This debate can be better informed by investigation of whether variations in thyroid function within the reference range have clinical effects. Thyroid hormone plays a critical role in determining energy expenditure, body mass, and body composition, and therefore clinically relevant variations in these parameters may occur across the normal range of thyroid function. Methods This was a cross-sectional study of 140 otherwise healthy hypothyroid subjects receiving chronic replacement therapy with levothyroxine (L-T4) who had TSH levels across the full span of the laboratory reference range (0.34 to 5.6 mU/L). Subjects underwent detailed tests of energy expenditure (total and resting energy expenditure, thermic effect of food, physical activity energy expenditure), substrate oxidation, diet intake, and body composition. Results Subjects with low-normal (≤2.5 mU/L) and high-normal (>2.5 mU/L) TSH levels did not differ in any of the outcome measures. However, across the entire group, serum free triiodothyronine (fT3) levels were directly correlated with resting energy expenditure, body mass index (BMI), body fat mass, and visceral fat mass, with clinically relevant variations in these outcomes. Conclusions Variations in thyroid function within the laboratory reference range have clinically relevant correlations with resting energy expenditure, BMI, and body composition in L-T4-treated subjects. However, salutary effects of higher fT3 levels on energy expenditure may be counteracted by deleterious effects on body weight and composition. Further studies are needed before these outcomes should be used as a basis for altering L-T4 doses in L-T4-treated subjects.
The Journal of Clinical Endocrinology and Metabolism | 2018
Mary H. Samuels; Irina Kolobova; Meike Niederhausen; Jeri S. Janowsky; Kathryn G. Schuff
Background The brain is a critical target organ for thyroid hormone, but it is unclear whether variations in thyroid function within and near the reference range affect quality of life, mood, or cognition. Methods A total of 138 subjects with levothyroxine (L-T4)-treated hypothyroidism and normal thyrotropin (TSH) levels underwent measures of quality of life (36-Item Short Form Health Survey, Underactive Thyroid-Dependent Quality of Life Questionnaire), mood (Profile of Mood States, Affective Lability Scale), and cognition (executive function, memory). They were then randomly assigned to receive an unchanged, higher, or lower L-T4 dose in double-blind fashion, targeting one of three TSH ranges (0.34 to 2.50, 2.51 to 5.60, or 5.61 to 12.0 mU/L). Doses were adjusted every 6 weeks based on TSH levels. Baseline measures were reassessed at 6 months. Results At the end of the study, by intention to treat, mean L-T4 doses were 1.50 ± 0.07, 1.32 ± 0.07, and 0.78 ± 0.08 μg/kg (P < 0.001), and mean TSH levels were 1.85 ± 0.25, 3.93 ± 0.38, and 9.49 ± 0.80 mU/L (P < 0.001), respectively, in the three arms. There were minor differences in a few outcomes between the three arms, which were no longer significant after correction for multiple comparisons. Subjects could not ascertain how their L-T4 doses had been adjusted (P = 0.55) but preferred L-T4 doses they perceived to be higher (P < 0.001). Conclusions Altering L-T4 doses in hypothyroid subjects to vary TSH levels in and near the reference range does not affect quality of life, mood, or cognition. L-T4-treated subjects prefer perceived higher L-T4 doses despite a lack of objective benefit. Adjusting L-T4 doses in hypothyroid patients based on symptoms in these areas may not result in significant clinical improvement.
The Journal of Clinical Endocrinology and Metabolism | 2018
Mary H. Samuels; Irina Kolobova; Meike Niederhausen; Jonathan Q. Purnell; Kathryn G. Schuff
Background It is unclear whether variations in thyroid status within or near the reference range affect energy expenditure, body mass, or body composition. Methods 138 subjects treated with levothyroxine (LT4) for hypothyroidism with normal TSH levels underwent measurement of total, resting, and physical activity energy expenditure; thermic effect of food; substrate oxidation; dietary intake; and body composition. They were assigned to receive an unchanged, higher, or lower LT4 dose in randomized, double-blind fashion, targeting one of three TSH ranges (0.34 to 2.50, 2.51 to 5.60, or 5.61 to 12.0 mU/L). The doses were adjusted every 6 weeks to achieve target TSH levels. Baseline measures were reassessed at 6 months. Results At study end, the mean LT4 doses and TSH levels were 1.50 ± 0.07, 1.32 ± 0.07, and 0.78 ± 0.08 µg/kg (P < 0.001) and 1.85 ± 0.25, 3.93 ± 0.38, and 9.49 ± 0.80 mU/L (P < 0.001), respectively, in the three arms. No substantial metabolic differences in outcome were found among the three arms, although direct correlations were observed between decreases in thyroid status and decreases in resting energy expenditure for all subjects. The subjects could not ascertain how their LT4 dose had been adjusted but the preferred LT4 dose they perceived to be higher (P < 0.001). Conclusions Altering LT4 doses in subjects with hypothyroidism to vary TSH levels in and near the reference range did not have major effects on energy expenditure or body composition. Subjects treated with LT4 preferred the perceived higher LT4 doses despite a lack of objective effect. Our data do not support adjusting LT4 doses in patients with hypothyroidism to achieve potential improvements in weight or body composition.
Sports | 2017
Daniele Conte; Terence G. Favero; Meike Niederhausen; Laura Capranica; Antonio Tessitore
This study aimed to assess the basketball ball-drills workload analyzing: (1) the effect of varying the number of players involved on physiological and technical demands; (2) the temporal changes in players’ responses across bouts; and (3) the relationship of players’ workload with their maturation status and training age. Twelve young male basketball players (mean ± SD; age 13.9 ± 0.7 years; height 1.76 ± 0.06 m; body mass 65.7 ± 12.5 kg; HRmax 202 ± 8 beat·min−1) completed three bouts of 4 min interspersed by 2 min of passive recovery of two vs. two and four vs. four ball-drills. The mean percentage of HRmax (%HRmax) and ratings of perceived exertion (RPE) were collected. Technical actions (TAs) (dribbles, passes, shots, interceptions, steals, rebounds, and turnovers) were calculated through notational analysis. Players’ genitalia development (GD) and pubic hair (PH) growth were assessed using Tanner scale. Results showed a higher %HRmax (p = 0.018), RPE (p = 0.042), dribbles (p = 0.007), shots (p = 0.003), and rebounds (p = 0.006) in two vs. two compared to four vs. four condition. Furthermore, a statistical difference was found for %HRmax (p = 0.005) and number of passes (p = 0.020) between bouts. In addition, no correlation between GD, PH, and training age with %HRmax, RPE, and TAs was found. These findings suggest that variations of the number of players involved affect ball-drills workload and that ball-drills training intensity varies across bouts. Finally, ball-drills elicit an adequate training stimulus, regardless of players’ maturation status and training age.
Current Drug Metabolism | 2016
Mary H. Samuels; Irina Kolobova; Anne Smeraglio; Meike Niederhausen; Jeri S. Janowsky; Kathryn G. Schuff; Mary Samuels; Jeri Janowsky
BACKGROUND There has been recent debate within the thyroid field regarding whether current upper limits of the thyrotropin (TSH) reference range should be lowered. This debate can be better informed by investigation of whether variations in thyroid function within the reference range have clinical effects. One important target organ for thyroid hormone is the brain, but little is known about variations in neurocognitive measures within the reference range for thyroid function. METHODS This was a cross-sectional study of 132 otherwise healthy hypothyroid subjects receiving chronic replacement therapy with levothyroxine (LT4) who had TSH levels across the full span of the laboratory reference range (0.34-5.6 mU/L). Subjects underwent detailed tests of health status, mood, and cognitive function, with an emphasis on memory and executive functions. RESULTS Subjects with low-normal (≤2.5 mU/L) and high-normal (>2.5 mU/L) TSH levels did not differ on most tests of health status, mood, or cognitive function, and there were no correlations between TSH, free T4, or free T3 levels and most outcomes. There was, however, a suggestion that thyroid function affected performance on the Iowa Gambling Task, which mimics real life decision-making. Subjects with low-normal TSH levels made more advantageous decisions than those with high-normal TSH levels. CONCLUSIONS Variations in thyroid function within the laboratory reference range do not appear to have clinically relevant effects on health status, mood, or memory in LT4 treated subjects. However, decision making, which encompasses many executive functions, may be affected. Unless further studies strengthen this finding, these data do not support narrowing the TSH reference range.Background: There has been recent debate within the thyroid field regarding whether current upper limits of the thyrotropin (TSH) reference range should be lowered. This debate can be better informed by investigation of whether variations in thyroid function within the reference range have clinical effects. One important target organ for thyroid hormone is the brain, but little is known about variations in neurocognitive measures within the reference range for thyroid function. Methods: This was a cross-sectional study of 132 otherwise healthy hypothyroid subjects receiving chronic replacement therapy with levothyroxine (LT4) who had TSH levels across the full span of the laboratory reference range (0.34–5.6 mU/L). Subjects underwent detailed tests of health status, mood, and cognitive function, with an emphasis on memory and executive functions. Results: Subjects with low-normal (≤2.5 mU/L) and high-normal (>2.5 mU/L) TSH levels did not differ on most tests of health status, mood, or cognitive function, ...
British Journal of Sports Medicine | 2018
Saurabh S. Thosar; Meike Niederhausen; Jodi Lapidus; Nora Fino; Joaquin E. Cigarroa; Jessica Minnier; Sandra Colner; Asha Nayak; Luke J. Burchill