Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meike Visel is active.

Publication


Featured researches published by Meike Visel.


Science Translational Medicine | 2013

In Vivo–Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous

Deniz Dalkara; Leah C. Byrne; Ryan R Klimczak; Meike Visel; Lu Yin; William H. Merigan; John G. Flannery; David V. Schaffer

Injection of a new gene therapy vector into the easily accessible vitreous transduced the entire retina and rescued disease phenotypes. New Eye Pod Gene therapy mediated by adeno-associated virus (AAV) vectors has been clinically successful for the treatment of certain inherited diseases of the retina—the light-sensitive structure at the back of the eye that houses the photoreceptor cells (rods and cones). These degenerative disorders arise from mutated genes that either fail to express an essential protein or express harmful proteins that drive structural breakdown, cell death, and, ultimately, blindness. Current gene therapy regimens require damaging injections of gene-carrying vectors into the space between the rod and cone photoreceptors and the retinal pigment epithelium. By this route, the genetic material is delivered to only part of the retina. Now, Dalkara et al. show that delivery of a new vector into the eye’s easily accessible vitreous humour transduces the entire retina and rescues degenerative eye disease phenotypes. The authors used in vivo–directed evolution to fashion an AAV vector that delivers wild-type versions of defective genes throughout the retina after noninjurious injection into the eye’s easily accessible vitreous humour—the gel-like liquid between the lens and the retina. The newly engineered gene therapy systems rescued disease phenotypes in two mouse models of inherited eye diseases (X-linked retinoschisis and Leber’s congenital amaurosis) and transduced photoreceptor cells in nonhuman primates when delivered via the vitreous. Development of these next-generation therapeutic “eye pods” suggests that gene therapy vectors can be designed to penetrate dense tissues, which currently constitute barriers to gene delivery. Inherited retinal degenerative diseases are a clinically promising focus of adeno-associated virus (AAV)–mediated gene therapy. These diseases arise from pathogenic mutations in mRNA transcripts expressed in the eye’s photoreceptor cells or retinal pigment epithelium (RPE), leading to cell death and structural deterioration. Because current gene delivery methods require an injurious subretinal injection to reach the photoreceptors or RPE and transduce just a fraction of the retina, they are suitable only for the treatment of rare degenerative diseases in which retinal structures remain intact. To address the need for broadly applicable gene delivery approaches, we implemented in vivo–directed evolution to engineer AAV variants that deliver the gene cargo to the outer retina after injection into the eye’s easily accessible vitreous humor. This approach has general implications for situations in which dense tissue penetration poses a barrier for gene delivery. A resulting AAV variant mediated widespread delivery to the outer retina and rescued the disease phenotypes of X-linked retinoschisis and Leber’s congenital amaurosis in corresponding mouse models. Furthermore, it enabled transduction of primate photoreceptors from the vitreous, expanding its therapeutic promise.


Molecular Therapy | 2009

Inner Limiting Membrane Barriers to AAV-mediated Retinal Transduction From the Vitreous

Deniz Dalkara; K. D. Kolstad; Natalia Caporale; Meike Visel; Ryan R Klimczak; David V. Schaffer; John G. Flannery

Adeno-associated viral gene therapy has shown great promise in treating retinal disorders, with three promising clinical trials in progress. Numerous adeno-associated virus (AAV) serotypes can infect various cells of the retina when administered subretinally, but the retinal detachment accompanying this injection induces changes that negatively impact the microenvironment and survival of retinal neurons. Intravitreal administration could circumvent this problem, but only AAV2 can infect retinal cells from the vitreous, and transduction is limited to the inner retina. We therefore sought to investigate and reduce barriers to transduction from the vitreous. We fluorescently labeled several AAV serotype capsids and followed their retinal distribution after intravitreal injection. AAV2, 8, and 9 accumulate at the vitreoretinal junction. AAV1 and 5 show no accumulation, indicating a lack of appropriate receptors at the inner limiting membrane (ILM). Importantly, mild digestion of the ILM with a nonspecific protease enabled substantially enhanced transduction of multiple retinal cell types from the vitreous, with AAV5 mediating particularly remarkable expression in all retinal layers. This protease treatment has no effect on retinal function as shown by electroretinogram (ERG) and visual cortex cell population responses. These findings may help avoid limitations, risks, and damage associated with subretinal injections currently necessary for clinical gene therapy.


Investigative Ophthalmology & Visual Science | 2011

Intravitreal injection of AAV2 transduces macaque inner retina

Lu Yin; Kenneth P. Greenberg; Jennifer J. Hunter; Deniz Dalkara; K. D. Kolstad; Benjamin Masella; Robert Wolfe; Meike Visel; Daniel Stone; Richard T. Libby; David DiLoreto; David V. Schaffer; John G. Flannery; David R. Williams; William H. Merigan

PURPOSE Adeno-associated virus serotype 2 (AAV2) has been shown to be effective in transducing inner retinal neurons after intravitreal injection in several species. However, results in nonprimates may not be predictive of transduction in the human inner retina, because of differences in eye size and the specialized morphology of the high-acuity human fovea. This was a study of inner retina transduction in the macaque, a primate with ocular characteristics most similar to that of humans. METHODS In vivo imaging and histology were used to examine GFP expression in the macaque inner retina after intravitreal injection of AAV vectors containing five distinct promoters. RESULTS AAV2 produced pronounced GFP expression in inner retinal cells of the fovea, no expression in the central retina beyond the fovea, and variable expression in the peripheral retina. AAV2 vector incorporating the neuronal promoter human connexin 36 (hCx36) transduced ganglion cells within a dense annulus around the fovea center, whereas AAV2 containing the ubiquitous promoter hybrid cytomegalovirus (CMV) enhancer/chicken-β-actin (CBA) transduced both Müller and ganglion cells in a dense circular disc centered on the fovea. With three shorter promoters--human synapsin (hSYN) and the shortened CBA and hCx36 promoters (smCBA and hCx36sh)--AAV2 produced visible transduction, as seen in fundus images, only when the retina was altered by ganglion cell loss or enzymatic vitreolysis. CONCLUSIONS The results in the macaque suggest that intravitreal injection of AAV2 would produce high levels of gene expression at the human fovea, important in retinal gene therapy, but not in the central retina beyond the fovea.


Molecular Therapy | 2011

AAV Mediated GDNF Secretion From Retinal Glia Slows Down Retinal Degeneration in a Rat Model of Retinitis Pigmentosa

Deniz Dalkara; K. D. Kolstad; K. Guerin; Natalie V Hoffmann; Meike Visel; Ryan R Klimczak; David V. Schaffer; John G. Flannery

Mutations in over 80 identified genes can induce apoptosis in photoreceptors, resulting in blindness with a prevalence of 1 in 3,000 individuals. This broad genetic heterogeneity of disease impacting a wide range of photoreceptor functions renders the design of gene-specific therapies for photoreceptor degeneration impractical and necessitates the development of mutation-independent treatments to slow photoreceptor cell death. One promising strategy for photoreceptor neuroprotection is neurotrophin secretion from Müller cells, the primary retinal glia. Müller glia are excellent targets for secreting neurotrophins as they span the entire tissue, ensheath all neuronal populations, are numerous, and persist through retinal degeneration. We previously engineered an adeno-associated virus (AAV) variant (ShH10) capable of efficient and selective glial cell transduction through intravitreal injection. ShH10-mediated glial-derived neurotrophic factor (GDNF) secretion from glia, generates high GDNF levels in treated retinas, leading to sustained functional rescue for over 5 months. This GDNF secretion from glia following intravitreal vector administration is a safe and effective means to slow the progression of retinal degeneration in a rat model of retinitis pigmentosa (RP) and shows significant promise as a gene therapy to treat human retinal degenerations. These findings also demonstrate for the first time that glia-mediated secretion of neurotrophins is a promising treatment that may be applicable to other neurodegenerative conditions.


Human Gene Therapy | 2010

Changes in adeno-associated virus-mediated gene delivery in retinal degeneration.

K. D. Kolstad; Deniz Dalkara; K. Guerin; Meike Visel; Natalie V Hoffmann; David V. Schaffer; John G. Flannery

Gene therapies for retinal degeneration have relied on subretinal delivery of viral vectors carrying therapeutic DNA. The subretinal injection is clearly not ideal as it limits the viral transduction profile to a focal region at the injection site and negatively affects the neural retina by detaching it from the supportive retinal pigment epithelium (RPE). We assessed changes in adeno-associated virus (AAV) dispersion and transduction in the degenerating rat retina after intravitreal delivery. We observed a significant increase in AAV-mediated gene transfer in the diseased compared with normal retina, the extent of which depends on the AAV serotype injected. We also identified key structural changes that correspond to increased viral infectivity. Particle diffusion and transgene accumulation in normal and diseased retina were monitored via fluorescent labeling of viral capsids and quantitative PCR. Viral particles were observed to accumulate at the vitreoretinal junction in normal retina, whereas particles spread into the outer retina and RPE in degenerated tissue. Immunohistochemistry illustrates remarkable changes in the architecture of the inner limiting membrane, which are likely to underlie the increased viral transduction in diseased retina. These data highlight the importance of characterizing gene delivery vectors in diseased tissue as structural and biochemical changes can alter viral vector transduction patterns. Furthermore, these results indicate that gene delivery to the outer nuclear layer may be achieved by noninvasive intravitreal AAV administration in the diseased state.


Gene Therapy | 2014

Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h-/-mouse

Leah C. Byrne; Bilge E. Öztürk; Trevor Lee; Cécile Fortuny; Meike Visel; Deniz Dalkara; David V. Schaffer; John G. Flannery

X-linked retinoschisis, a disease characterized by splitting of the retina, is caused by mutations in the retinoschisin gene, which encodes a putative secreted cell adhesion protein. Currently, there is no effective treatment for retinoschisis, though viral vector-mediated gene replacement therapies offer promise. We used intravitreal delivery of three different AAV vectors to target delivery of the RS1 gene to Müller glia, photoreceptors or multiple cell types throughout the retina. Müller glia radially span the entire retina, are accessible from the vitreous, and remain intact throughout progression of the disease. However, photoreceptors, not glia, normally secrete retinoschisin. We compared the efficacy of rescue mediated by retinoschisin secretion from these specific subtypes of retinal cells in the Rs1h−/− mouse model of retinoschisis. Our results indicate that all three vectors deliver the RS1 gene, and that several cell types can secrete retinoschisin, leading to transport of the protein across the retina. The greatest long-term rescue was observed when photoreceptors produce retinoschisin. Similar rescue was observed with photoreceptor-specific or generalized expression, although photoreceptor secretion may contribute to rescue in the latter case. These results collectively point to the importance of cell targeting and appropriate vector choice in the success of retinal gene therapies.


PLOS Genetics | 2009

CLRN1 Is Nonessential in the Mouse Retina but Is Required for Cochlear Hair Cell Development

Scott F. Geller; K. Guerin; Meike Visel; Aaron Pham; Edwin S. Lee; Amiel A. Dror; Karen B. Avraham; Toshinori Hayashi; Catherine A. Ray; Thomas A. Reh; Olivia Bermingham-McDonogh; William J. Triffo; Shaowen Bao; J. Isosomppi; Hanna Västinsalo; E.-M. Sankila; John G. Flannery

Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5–6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT–PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT–PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.


PLOS ONE | 2013

AAV-mediated, optogenetic ablation of Muller Glia leads to structural and functional changes in the mouse retina.

Leah C. Byrne; Fakhra Khalid; Trevor Lee; Emilia A. Zin; Kenneth P. Greenberg; Meike Visel; David V. Schaffer; John G. Flannery

Müller glia, the primary glial cell in the retina, provide structural and metabolic support for neurons and are essential for retinal integrity. Müller cells are closely involved in many retinal degenerative diseases, including macular telangiectasia type 2, in which impairment of central vision may be linked to a primary defect in Müller glia. Here, we used an engineered, Müller-specific variant of AAV, called ShH10, to deliver a photo-inducibly toxic protein, KillerRed, to Müller cells in the mouse retina. We characterized the results of specific ablation of these cells on visual function and retinal structure. ShH10-KillerRed expression was obtained following intravitreal injection and eyes were then irradiated with green light to induce toxicity. Induction of KillerRed led to loss of Müller cells and a concomitant decrease of Müller cell markers glutamine synthetase and cellular retinaldehyde-binding protein, reduction of rhodopsin and cone opsin, and upregulation of glial fibrillary acidic protein. Loss of Müller cells also resulted in retinal disorganization, including thinning of the outer nuclear layer and the photoreceptor inner and outer segments. High resolution imaging of thin sections revealed displacement of photoreceptors from the ONL, formation of rosette-like structures and the presence of phagocytic cells. Furthermore, Müller cell ablation resulted in increased area and volume of retinal blood vessels, as well as the formation of tortuous blood vessels and vascular leakage. Electrophysiologic measures demonstrated reduced retinal function, evident in decreased photopic and scotopic electroretinogram amplitudes. These results show that loss of Müller cells can cause progressive retinal degenerative disease, and suggest that AAV delivery of an inducibly toxic protein in Müller cells may be useful to create large animal models of retinal dystrophies.


Methods of Molecular Biology | 2012

Adeno-associated viral vectors for gene therapy of inherited retinal degenerations.

John G. Flannery; Meike Visel

Adeno-associated virus (AAV) vectors are in wide use for in vivo gene transfer for the treatment of inherited retinal disease. AAV vectors have been tested in many animal models and have demonstrated efficacy with low toxicity. In this chapter we describe some of the recent methods for small-scale production of these vectors for use in a laboratory setting in volumes and purity appropriate for testing in small and large animals.


Archive | 2018

Optogenetic Retinal Gene Therapy with the Light Gated GPCR Vertebrate Rhodopsin

Benjamin M. Gaub; Michael H. Berry; Meike Visel; Amy Holt; Ehud Y. Isacoff; John G. Flannery

In retinal disease, despite the loss of light sensitivity as photoreceptors die, many retinal interneurons survive in a physiologically and metabolically functional state for long periods. This provides an opportunity for treatment by genetically adding a light sensitive function to these cells. Optogenetic therapies are in development, but, to date, they have suffered from low light sensitivity and narrow dynamic response range of microbial opsins. Expression of light-sensitive G protein coupled receptors (GPCRs), such as vertebrate rhodopsin , can increase sensitivity by signal amplification , as shown by several groups. Here, we describe the methods to (1) express light gated GPCRs in retinal neurons, (2) record light responses in retinal explants in vitro, (3) record cortical light responses in vivo, and (4) test visually guided behavior in treated mice.

Collaboration


Dive into the Meike Visel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. D. Kolstad

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Guerin

University of California

View shared research outputs
Top Co-Authors

Avatar

Amy Holt

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Yin

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge