Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meilan Xue is active.

Publication


Featured researches published by Meilan Xue.


PLOS ONE | 2012

Anticancer Properties and Mechanisms of Fucoidan on Mouse Breast Cancer In Vitro and In Vivo

Meilan Xue; Yinlin Ge; Jinyu Zhang; Qing Wang; Lin Hou; Yongchao Liu; Lingling Sun; Quan Li

Background Fucoidan is a sulfated polysaccharide derived from brown algae that has been reported to perform multiple biological activities, including antitumor activity. In this study, we examined the influence of crude fucoidan on mouse breast cancer in vitro and in vivo. Materials and Methods In vitro, fluorescent staining, flow cytometry and Western blot were performed to analyze apoptosis and vascular endothelial growth factor (VEGF) expression of mouse breast cancer 4T1 cells. In vivo, therapy experiments were conducted on Babl/c mice bearing breast cancer. The tumor volume and weight were measured. The number of apoptotic cells and microvascular density (MVD) in tumor tissues were assessed by TUNEL and CD34 immunostaining. Immunohistochemical assays and ELISA assay were used to detect the expression of VEGF in tissues. Results In vitro studies showed that crude fucoidan significantly decreased the viable number of 4T1 cells, induced apoptosis and down-regulated the expression of VEGF. The expression of Bcl-2 was decreased, and the ratio of Bcl-2 to Bax was significantly decreased. The expression of Survivin and phosphorylated extracellular signal regulated protein kinases (ERKs) was decreased. Cytochrome C was released from mitochondria into cytosol, and the cleaved Caspase-3 protein rose after fucoidan treatment. Intraperitoneal injection of fucoidan in breast cancer models reduced the tumor volume and weight. The enhanced antitumor efficacy was associated with decreased angiogenesis and increased induction of apoptosis. Conclusion These findings indicated that crude fucoidan inhibited mouse breast cancer growth in vitro and in vivo. These data suggest that fucoidan may serve as a potential therapeutic agent for breast cancer.


Journal of Nutritional Biochemistry | 2014

Docosahexaenoic acid inhibited the Wnt/β-Catenin pathway and suppressed breast cancer cells in vitro and in vivo ☆

Meilan Xue; Qing Wang; Jinglan Zhao; Liyan Dong; Yinlin Ge; Lin Hou; Yongchao Liu; Zheng Zheng

N-3 fatty acids (FAs) are essential FAs necessary for human health and are known to possess anticancer properties. However, the relationship between n-3 FAs and β-catenin, one of the key components of the Wnt signaling pathway, in mouse breast cancer remains poorly characterized. In this study, 4T1 mouse breast cancer cells were exposed to a representative n-3 FA, docosahexaenoic acid (DHA), to investigate the relationship between n-3 FAs and the Wnt/β-catenin signaling pathway in vivo and in vitro. In vitro studies showed that DHA strongly inhibited cell growth, and induced G1 cell cycle arrest both in 4T1 mouse breast cells and MCF-7 human breast cells. DHA reduced β-catenin expression and T cell factor/lymphoid-enhancing factor reporter activity in 4T1 mouse breast cells. In addition, DHA down-regulated the expression of downstream target genes such as c-myc and cyclinD1. In vivo, therapy experiments were conducted on Babl/c mice bearing breast cancer. We found that feeding mouse the 5% fish oil-supplemented diet for 30 days significantly reduced the growth of 4T1 mouse breast cancer in vivo through inhibition of cancer cell proliferation as well as induction of apoptosis. Feeding animals a 5% fish oil diet significantly induced down-regulation of β-catenin in tumor tissues with a notable increase in apoptosis. In addition, fish oil-supplemented diet decreased lung metastases of breast cancer. These observations suggested that DHA exerted its anticancer activity through down-regulation of Wnt/β-catenin signaling. Thus, our data call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of breast cancer.


Nutrition and Cancer | 2013

Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/β-catenin signaling.

Meilan Xue; Yinlin Ge; Jinyu Zhang; Yongchao Liu; Qing Wang; Lin Hou; Zheng Zheng

Fucoidan is a sulfated polysaccharide derived from brown algae and is known to possess anticancer properties. However, the relationship between fucoidan and β-catenin, one of the key components of the Wnt signaling pathway, in mouse breast cancer remains poorly characterized. In this study, mouse breast cancer cells (4T1) were exposed to fucoidan to investigate the relationship between fucoidan and the Wnt/β-catenin signaling pathway in vivo and in vitro. We found that fucoidan significantly inhibited cell growth, increased cell death, and induced G1 cell cycle arrest in 4T1 cells. Fucoidan also reduced β-catenin expression and T cell factor/lymphoid-enhancing factor reporter activity. Furthermore, fucoidan downregulated the expression of downstream target genes such as c-myc, cyclin D1, and survivin. Intraperitoneal injection of fucoidan in tumor-bearing mice reduced the tumor volume and weight. Fucoidan induced aberrant downregulation of β-catenin in tumor tissues with a significant increase in apoptosis. Thus, our data suggested that fucoidan exerts its anticancer activity through downregulation of Wnt/β-catenin signaling. Fucoidan may be an effective therapy for the chemoprevention and treatment of mouse breast cancer.


Molecular Medicine Reports | 2015

PUFA diets alter the microRNA expression profiles in an inflammation rat model

Zheng Zheng; Yinlin Ge; Jinyu Zhang; Meilan Xue; Quan Li; Dongliang Lin; Wenhui Ma

Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis.


Molecular Medicine Reports | 2008

Chemically modified siRNA directed against the KDR gene inhibits the proliferation of breast cancer cells.

Yinlin Ge; Jinyu Zhang; Xiao Zhang; Lin Hou; Quan Li; Meilan Xue

Vascular endothelial growth factor receptor-2 or kinase insert domain-containing receptor (VEGFR2/KDR) is secreted by most solid tumors, including breast cancer, and is an important mediator of angiogenesis. To observe the effects of KDR gene expression on cell proliferation and the cell cycle in MCF-7 cells in vitro and in vivo, we used chemically modified siRNA directed against KDR. The results revealed that chemically modified siRNA transfection of the KDR gene effectively inhibited the proliferation of MCF-7 cells, arrested cells in the G1 phase and down-regulated the expression of KDR. In addition, in the progression of cell cycle arrest induced by siRNA, phosphorylated ERK and CDK1 expression was down-regulated (P<0.01). In vivo, the growth of tumors was visibly suppressed. RT-PCR and the results of immunohistochemistry indicated that KDR mRNA and protein expression was reduced in the excised tumors. In contrast, there were no obvious changes in the control groups. This implies that chemically modified KDR siRNA markedly decreases KDR gene expression and inhibits cellular proliferation in vitro, as well as suppressing tumor growth in a xenograft model. KDR may be a new target for breast cancer treatment.


Neuroscience Letters | 2016

Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus

Shuangshuang Ma; Yinlin Ge; Xiaoying Gai; Meilan Xue; Ning Li; Jingxuan Kang; Jianbo Wan; Jinyu Zhang

Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice.


PLOS ONE | 2017

Protective effect of aplysin on liver tissue and the gut microbiota in alcohol-fed rats

Meilan Xue; Ying Liu; Rui Lyu; Na Ge; Man Liu; Yan Ma; Hui Liang

Background This study investigated the protective effect of aplysin on the liver and its influence on inflammation and the gut microbiota in rats with ethanol-induced liver injury. Methods Male Sprague-Dawley rats were randomly assigned to an alcohol-containing liquid diet, control liquid diet or treatment with aplysin for 8 weeks. Hepatic and intestinal histopathological analysis was performed, and cytokine levels and the intestinal mucosal barrier were assessed. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) and 16S rDNA high-throughput sequencing were performed to provide an overview of the gut microbiota composition. Results Chronic alcohol exposure caused liver damage in rats. Serum aspartate aminotransferase (AST), aminotransferase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) activities in liver tissue were higher than in the control group. Alcohol administration elevated the levels of serum transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) and reduced interleukin-10 (IL-10) levels compared with those of control rats. In addition, the levels of plasma endotoxin, diamine oxidase (DAO), and fatty acid-binding protein 2 (FABP2) in the alcohol group were higher than in the control group. The results of ERIC-PCR indicated that aplysin treatment shifted the overall structure of the ethanol-disrupted gut microbiota toward that of the control group. One hundred twenty to 190 genera of bacteria were detected by high throughput sequencing. Alcohol-induced changes in the gut microbial composition were detected at the genus level. These alcohol-induced effects could be reversed with aplysin treatment. Conclusions These results suggest that aplysin exerts a protective effect on ethanol-induced hepatic injury in rats by normalizing fecal microbiota composition and repairing intestinal barrier function.


Nutrition and Cancer | 2017

The Protective and Immunomodulatory Effects of Fucoidan Against 7,12-Dimethyl benz[a]anthracene-Induced Experimental Mammary Carcinogenesis Through the PD1/PDL1 Signaling Pathway in Rats

Meilan Xue; Hui Liang; Qingjuan Tang; Chuanxing Xue; Xinjia He; Li Zhang; Zheng Zhang; Zhengyan Liang; Kang Bian; Lichen Zhang; Zhuxin Li

ABSTRACT Fucoidan is a sulfated polysaccharide that is extracted from brown algae seaweed. This study was designed to evaluate the protective and immunomodulatory effects of dietary fucoidan on 7,12-dimethyl benz[a]anthracene (DMBA)-induced experimental mammary carcinogenesis in rats. Sixty Sprague-Dawley rats were randomly assigned to four equal groups: the control group (control group), the cancer model group (model group), and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg/kg·body weight, respectively. We found that fucoidan treatment decreased the tumor incidence and mean tumor weight and prolonged the tumor latency. Flow cytometric analyses revealed that the number of blood natural killer cells was higher after fucoidan treatment and that the proportions of CD4 and CD8 T cells were also increased. The serum levels of interleukin (IL)-6, IL-12p40, and interferon (IFN)-γ were higher in the rats treated with fucoidan compared to those of model rats. Moreover, the percentage of CD3+ Foxp3+ regulatory T cells in the blood and the levels of IL-10 and transforming growth factor β in the serum were lower in the rats treated with fucoidan. Furthermore, fucoidan treatment decreased the expression of Foxp3 and programmed cell death 1 ligand 1 (PDL1) in tumor tissues. The levels of p-phosphatidyl inositol kinase 3 and p-AKT in tumor tissues were also lower than those of model rats. These results suggest that a fucoidan-supplemented diet can inhibit DMBA-induced tumors in rats. This study provides experimental evidence toward elucidating the immune enhancement induced by fucoidan through the programmed cell death 1/PDL1 signaling pathway. The immunomodulatory effect is one of the possible mechanisms of the protective effect of fucoidan against mammary carcinogenesis.


Biomedicine & Pharmacotherapy | 2017

Caspase-dependent and caspase-independent induction of apoptosis in breast cancer by fucoidan via the PI3K/AKT/GSK3β pathway in vivo and in vitro

Meilan Xue; Xinqiang Ji; Chuanxing Xue; Hui Liang; Yinlin Ge; Xinjia He; Li Zhang; Kang Bian; Lichen Zhang

Purpose Fucoidan, a complex, sulfated polysaccharide obtained from brown seaweed, exerted anticancer activity through the down-regulation of β-catenin signaling in mouse breast cancer cells in our previous study. This study examines the anti-cancer effects of fucoidan as well as its underlying molecular mechanisms in the human triple negative breast cancer (TNBC) cell line and in 7,12-dimethylbenz[a]anthracene (DMBA)-induced experimental mammary carcinogenesis in rats. Methods in vitro studies, fluorescent staining, flow cytometry and Western blotting were performed to analyze apoptosis and protein expression in human breast cancer MDA-MB-231 cells. In vivo intervention experiments were conducted with Sprague Dawley (SD) rats with DMBA-induced breast cancer. Tumor volumes and weights were measured. Results in vitro fucoidan treatment inhibited proliferation and induced apoptosis in MDA-MB-231 cells. Western blotting detected that Cyt C and Smac were released into the cell cytoplasm and that caspase-3 and caspase-9 were activated in MDA-MB-231 cells. The levels of AIF and EndoG were significantly increased in the cytoplasm and in the nuclei by fucoidan. These data show that fucoidan induced caspase-dependent and caspase-independent apoptosis. Moreover, fucoidan treatment down-regulated the expression of Bid, Bcl-2 and Bcl-xl and up-regulated the level of Bax. In vivo, fucoidan supplementation decreased the mean tumor weight. DISCUSSION Results from the in vivo and in vitro experiments both showed that fucoidan decreased the levels of p-PI3K, p-AKT and p-GSK-3β (Ser9) in breast cancer. The level of β-catenin was also decreased. These results suggest that fucoidan can inhibit MDA-MB-231 human breast cancer cells and DMBA-induced tumors in rats by down-regulating the PI3 K/AKT/GSK3β pathway. This study provides experimental evidence that elucidates the mechanism of antitumor effect of fucoidan and clarifies the mechanism of the effect of fucoidan on the regulation of β-catenin.


Oncology Letters | 2016

Downregulation of survivin expression exerts antitumoral effects on mouse breast cancer cells in vitro and in vivo

Wenhui Ma; Yongchao Liu; Meilan Xue; Zheng Zheng; Yinlin Ge

Metastasis constantly occurs in the majority of cases of primary breast cancer at late stage or following surgical treatment. Survivin, a member of the inhibitor of apoptosis protein family, has long been recognized as a promising anticancer target, but its antitumor effects remain largely unexplored. In order to elucidate the role of survivin in breast cancer metastasis, short interfering RNA (siRNA) was used in the present study to specifically downregulate survivin expression in the murine breast cancer cell line 4T1. The results demonstrated that blocking the expression of survivin by siRNA inhibited the proliferation, migration and invasion abilities of murine breast cancer cells in vitro. Vascular endothelial growth factor (VEGF)-C is a lymphatic endothelial cell-stimulating factor that may lead to the formation of lymphatic vessels in lymph nodes. In the present study, the inhibition of survivin by siRNA was able to reduce the overexpression of VEGF-C in 4T1 cells. Furthermore, intratumoral injections of the survivin-siRNA significantly inhibited the growth of orthotopically transplanted 4T1 tumors in vivo. In addition, the number of pulmonary metastases and the microlymphatic vessel density were significantly reduced in vivo, following transfection with survivin-siRNA. The results of the present study suggested that the Akt/hypoxia-inducible factor-1α signaling pathway participates in the survivin-mediated downregulation of VEGF-C expression observed in breast cancer cells treated with survivin-siRNA. Therefore, the use of siRNA specifically targeting survivin may be a potential anticancer method in the future.

Collaboration


Dive into the Meilan Xue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge