Meilina Ong-Abdullah
Malaysian Palm Oil Board
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meilina Ong-Abdullah.
Nature | 2013
Rajinder Singh; Meilina Ong-Abdullah; Eng Ti Leslie Low; Mohamad Arif Abdul Manaf; Rozana Rosli; Rajanaidu Nookiah; Leslie Cheng-Li Ooi; Siew Eng Ooi; Kuang Lim Chan; Mohd Amin Ab Halim; Norazah Azizi; Jayanthi Nagappan; Blaire Bacher; Nathan Lakey; Steven W. Smith; Dong He; Michael Hogan; Muhammad A. Budiman; Ernest K. Lee; Rob DeSalle; David Kudrna; Jose Luis Goicoechea; Rod A. Wing; Richard Wilson; Robert S. Fulton; Jared M. Ordway; Robert A. Martienssen; Ravigadevi Sambanthamurthi
Oil palm is the most productive oil-bearing crop. Although it is planted on only 5% of the total world vegetable oil acreage, palm oil accounts for 33% of vegetable oil and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8-gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. A total of 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators, which are highly expressed in the kernel. We also report the draft sequence of the South American oil palm Elaeis oleifera, which has the same number of chromosomes (2n = 32) and produces fertile interspecific hybrids with E. guineensis but seems to have diverged in the New World. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations that restrict the use of clones in commercial plantings, and should therefore help to achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.
Nature | 2015
Meilina Ong-Abdullah; Jared M. Ordway; Nan Jiang; Siew Eng Ooi; Sau-Yee Kok; Norashikin Sarpan; Nuraziyan Azimi; Ahmad Tarmizi Hashim; Zamzuri Ishak; Samsul Kamal Rosli; Fadila Ahmad Malike; Nor Azwani Abu Bakar; Marhalil Marjuni; Norziha Abdullah; Zulkifli Yaakub; Mohd Din Amiruddin; Rajanaidu Nookiah; Rajinder Singh; Eng-Ti Leslie Low; Kuang-Lim Chan; Norazah Azizi; Steven W. Smith; Blaire Bacher; Muhammad A. Budiman; Andrew Van Brunt; Corey Wischmeyer; Melissa Beil; Michael Hogan; Nathan Lakey; Chin-Ching Lim
Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit ‘mantled’ abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, ‘mantling’ has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.
Nature | 2013
Rajinder Singh; Eng-Ti Leslie Low; Leslie Cheng-Li Ooi; Meilina Ong-Abdullah; Ngoot-Chin Ting; Jayanthi Nagappan; Rajanaidu Nookiah; Mohd Din Amiruddin; Rozana Rosli; Mohamad Arif Abdul Manaf; Kuang-Lim Chan; Mohd Amin Ab Halim; Norazah Azizi; Nathan Lakey; Steven W. Smith; Muhammad A. Budiman; Michael Hogan; Blaire Bacher; Andrew Van Brunt; Chunyan Wang; Jared M. Ordway; Ravigadevi Sambanthamurthi; Robert A. Martienssen
A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation.
Nature Communications | 2014
Rajinder Singh; Eng Ti Leslie Low; Leslie Cheng-Li Ooi; Meilina Ong-Abdullah; Rajanaidu Nookiah; Ngoot-Chin Ting; Marhalil Marjuni; Chan Pl; Ithnin M; Mohamad Arif Abdul Manaf; Jayanthi Nagappan; Kuang-Lim Chan; Rozana Rosli; Mohd Amin Ab Halim; Norazah Azizi; Muhammad A. Budiman; Nathan Lakey; Blaire Bacher; Van Brunt A; Wang C; Michael Hogan; He D; MacDonald Jd; Steven W. Smith; Jared M. Ordway; Robert A. Martienssen; Ravigadevi Sambanthamurthi
Oil palm, a plantation crop of major economic importance in Southeast Asia, is the predominant source of edible oil worldwide. We report the identification of the VIRESCENS (VIR) gene, which controls fruit exocarp colour and is an indicator of ripeness. VIR is a R2R3-MYB transcription factor with homology to Lilium LhMYB12 and similarity to Arabidopsis PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1). We identify five independent mutant alleles of VIR in over 400 accessions from sub-Saharan Africa that account for the dominant-negative virescens phenotype. Each mutation results in premature termination of the carboxy-terminal domain of VIR, resembling McClintock’s C1-I allele in maize. The abundance of alleles likely reflects cultural practices, by which fruits were venerated for magical and medicinal properties. The identification of VIR will allow selection of the trait at the seed or early-nursery stage, 3-6 years before fruits are produced, greatly advancing introgression into elite breeding material.
PLOS ONE | 2014
Eng-Ti Leslie Low; Rozana Rosli; Nagappan Jayanthi; Ab Halim Mohd-Amin; Norazah Azizi; Kuang-Lim Chan; Nauman J. Maqbool; Paul Maclean; Rudi Brauning; Alan S McCulloch; Roger Moraga; Meilina Ong-Abdullah; Rajinder Singh
Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the worlds vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm.
Molecular Biotechnology | 2011
Le Vinh Thuc; Norashikin Sarpan; Huynh Ky; Siew-Eng Ooi; Suhaimi Napis; Chai Ling Ho; Meilina Ong-Abdullah; Chiew Foan Chin; Parameswari Namasivayam
In this study, we report the molecular characterization of clone Eg707 isolated from cell suspension culture of the oil palm. The deduced polypeptide of clone Eg707 is highly similar to an unknown protein from Arabidopsis thaliana. The presence of an Ald-Xan-dh-C2 superfamily domain in the deduced protein sequence suggested that Eg707 protein might be involved in abscisic acid biosynthesis. Eg707 might be present as a single copy gene in the oil palm genome. This gene is highly expressed in tissue cultured materials compared to vegetative and reproductive tissues, suggesting a role of this gene during oil palm somatic embryogenesis or at the early stages of embryo development. Expression analysis of Eg707 by RNA in situ hybridization showed that Eg707 transcripts were present throughout somatic embryo development starting from proembryo formation at the embryogenic callus stages till the maturing embryo stages. Since proembryo formation within the embryogenic callus is one of the first key factors in oil palm somatic embryo development, it is suggested that Eg707 could be used as a reliable molecular marker for detecting early stage of oil palm somatic embryogenesis.
Journal of Plant Growth Regulation | 2013
Siew-Eng Ooi; Ondřej Novák; Karel Doležal; Zamzuri Ishak; Meilina Ong-Abdullah
The mantled abnormality phenotype of the oil palm affects fruit development and thus jeopardizes oil yield. Cytokinins have been implicated in the development of the mantled phenotype. Endogenous cytokinin levels in the normal and mantled phenotypes were compared to determine whether levels of specific cytokinins are associated with mantling. Endogenous cytokinins were identified and quantified in in vitro cultures and inflorescences from normal and mantled oil palms. Twenty-two isoprenoid cytokinins, comprising the zeatin, dihydrozeatin, and isopentenyladenine types, were quantified. Total cytokinin levels, particularly of trans-zeatin and isopentenyladenine types, increased during the in vitro culture process, with the highest levels detected at the proliferating polyembryoid stages. The cytokinins were present mainly in their inactive 9-glucoside forms during in vitro culture. On the other hand, the predominant trans-zeatin cytokinins in inflorescences were present mainly in their ribotide forms, suggesting a metabolic pool of cytokinins for conversion to biologically active free bases or ribosides. Levels of specific cytokinins were significantly different in tissues at different stages. Mantled developed inflorescences contained higher levels of isopentenyladenine 9-glucoside compared with normal inflorescences. Mantled-derived callus tissues had higher isopentenyladenine levels but significantly lower levels of trans-zeatin 9-glucoside, dihydrozeatin riboside, and dihydrozeatin riboside 5′-monophosphate cytokinins compared with normal-derived callus. It would be of considerable interest to verify these specific cytokinin differences in more callus cultures and clones.
Tree Genetics & Genomes | 2013
Wai Kuan Ho; Siew-Eng Ooi; Sean Mayes; Parameswari Namasivayam; Meilina Ong-Abdullah; Chiew Foan Chin
The association between DNA methylation status and embryogenic competency in oil palm tissue culture was examined through Representational Difference Analysis (RDA) approach, using methylation-sensitive restriction endonucleases. “Difference Products” (DPs) of RDA derived from palms of similar genetic backgrounds but exhibiting different embryogenesis rates during the regeneration process were isolated. The DPs were sequenced using a pyrosequencing platform. To our knowledge, this is the first study profiling partial HpaII methylation sites in oil palm young leaf tissues which are potentially associated with embryogenic amenability through a genomic subtractive approach. Quantitative real-time PCR analysis demonstrated that the methylation status of a novel fragment, EgNB3, was higher in highly embryogenic leaf explants compared to low embryogenesis rate materials. These differences are likely to be contributed by the 5′-mCCGG-3′ and/or 5′-mCmCGG-3′ methylation patterns. Our data suggest that the differentially methylated site in EgNB3 has potential as a molecular biomarker for the screening of oil palm leaf explants for their embryogenic potentials.
PLOS ONE | 2018
Rozana Rosli; Nadzirah Amiruddin; Mohd Amin Ab Halim; Pek-Lan Chan; Kuang-Lim Chan; Norazah Azizi; Priscilla E. Morris; Eng-Ti Leslie Low; Meilina Ong-Abdullah; Ravigadevi Sambanthamurthi; Rajinder Singh; Denis J. Murphy
Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.
Tree Genetics & Genomes | 2017
Huili Ho; Ranganath Gudimella; Meilina Ong-Abdullah; Jennifer Ann Harikrishna
In African oil palm, the formation of fruit relies on the successful progression of a 2- to 3-year phase of development of inflorescences, in particular the female inflorescence. In this study, we investigated microRNA expression in female inflorescences at two stages of floral development corresponding to the emergence of floral meristems and to the formation of floral organs. High-throughput sequencing data from messenger RNA (mRNA), small RNA, and RNA degradome libraries were used to predict and quantify orthologous and oil palm-specific microRNAs (miRNAs) and their targets. The expression of selected miRNA candidates was validated by quantitative RT-PCR. From female inflorescences, we assembled a reference transcriptome, which allowed us to identify the miRNA precursor sequences and the putative mRNA targets in oil palm. As validated by degradome analysis, we confirmed the cleavage patterns of mRNA targets for oil palm miRNAs. We report here differential gene expression patterns of 18 orthologous miRNA families and their targets in oil palm female inflorescences. Of these, we identified two distinct subsets of orthologous miRNAs that showed inverse expression patterns in female inflorescence of oil palm. We also predicted 15 putative oil palm-specific miRNAs, of which three were validated using quantitative RT-PCR. In oil palm, distinct subsets of miRNAs were differentially expressed at the stage when the floral meristems emerge and at the stage when the floral organs form. These miRNAs are likely to act in concert with their mRNA targets to regulate the early phase of floral organ establishment.