Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meinard Müller is active.

Publication


Featured researches published by Meinard Müller.


Archive | 2007

Information Retrieval for Music and Motion

Meinard Müller

Analysis and Retrieval Techniques for Music Data.- Fundamentals on Music and Audio Data.- Pitch- and Chroma-Based Audio Features.- Dynamic Time Warping.- Music Synchronization.- Audio Matching.- Audio Structure Analysis.- SyncPlayer: An Advanced Audio Player.- Analysis and Retrieval Techniques for Motion Data.- Fundamentals on Motion Capture Data.- DTW-Based Motion Comparison and Retrieval.- Relational Features and Adaptive Segmentation.- Index-Based Motion Retrieval.- Motion Templates.- MT-Based Motion Annotation and Retrieval.


international conference on computer graphics and interactive techniques | 2005

Efficient content-based retrieval of motion capture data

Meinard Müller; Tido Röder; Michael Clausen

The reuse of human motion capture data to create new, realistic motions by applying morphing and blending techniques has become an important issue in computer animation. This requires the identification and extraction of logically related motions scattered within some data set. Such content-based retrieval of motion capture data, which is the topic of this paper, constitutes a difficult and time-consuming problem due to significant spatio-temporal variations between logically related motions. In our approach, we introduce various kinds of qualitative features describing geometric relations between specified body points of a pose and show how these features induce a time segmentation of motion capture data streams. By incorporating spatio-temporal invariance into the geometric features and adaptive segments, we are able to adopt efficient indexing methods allowing for flexible and efficient content-based retrieval and browsing in huge motion capture databases. Furthermore, we obtain an efficient preprocessing method substantially accelerating the cost-intensive classical dynamic time warping techniques for the time alignment of logically similar motion data streams. We present experimental results on a test data set of more than one million frames, corresponding to 180 minutes of motion. The linearity of our indexing algorithms guarantees the scalability of our results to much larger data sets.


symposium on computer animation | 2006

Motion templates for automatic classification and retrieval of motion capture data

Meinard Müller; Tido Röder

This paper presents new methods for automatic classification and retrieval of motion capture data facilitating the identification of logically related motions scattered in some database. As the main ingredient, we introduce the concept of motion templates (MTs), by which the essence of an entire class of logically related motions can be captured in an explicit and semantically interpretable matrix representation. The key property of MTs is that the variable aspects of a motion class can be automatically masked out in the comparison with unknown motion data. This facilitates robust and efficient motion retrieval even in the presence of large spatio-temporal variations. Furthermore, we describe how to learn an MT for a specific motion class from a given set of training motions. In our extensive experiments, which are based on several hours of motion data, MTs proved to be a powerful concept for motion annotation and retrieval, yielding accurate results even for highly variable motion classes such as cartwheels, lying down, or throwing motions.


international conference on computer vision | 2011

A data-driven approach for real-time full body pose reconstruction from a depth camera

Andreas Baak; Meinard Müller; Gaurav Bharaj; Hans-Peter Seidel; Christian Theobalt

In recent years, depth cameras have become a widely available sensor type that captures depth images at real-time frame rates. Even though recent approaches have shown that 3D pose estimation from monocular 2.5D depth images has become feasible, there are still challenging problems due to strong noise in the depth data and self-occlusions in the motions being captured. In this paper, we present an efficient and robust pose estimation framework for tracking full-body motions from a single depth image stream. Following a data-driven hybrid strategy that combines local optimization with global retrieval techniques, we contribute several technical improvements that lead to speed-ups of an order of magnitude compared to previous approaches. In particular, we introduce a variant of Dijkstras algorithm to efficiently extract pose features from the depth data and describe a novel late-fusion scheme based on an efficiently computable sparse Hausdorff distance to combine local and global pose estimates. Our experiments show that the combination of these techniques facilitates real-time tracking with stable results even for fast and complex motions, making it applicable to a wide range of inter-active scenarios.


IEEE Journal of Selected Topics in Signal Processing | 2011

Signal Processing for Music Analysis

Meinard Müller; Daniel P. W. Ellis; Anssi Klapuri; Gaël Richard

Music signal processing may appear to be the junior relation of the large and mature field of speech signal processing, not least because many techniques and representations originally developed for speech have been applied to music, often with good results. However, music signals possess specific acoustic and structural characteristics that distinguish them from spoken language or other nonmusical signals. This paper provides an overview of some signal analysis techniques that specifically address musical dimensions such as melody, harmony, rhythm, and timbre. We will examine how particular characteristics of music signals impact and determine these techniques, and we highlight a number of novel music analysis and retrieval tasks that such processing makes possible. Our goal is to demonstrate that, to be successful, music audio signal processing techniques must be informed by a deep and thorough insight into the nature of music itself.


international conference on acoustics, speech, and signal processing | 2009

High resolution audio synchronization using chroma onset features

Sebastian Ewert; Meinard Müller; Peter Grosche

The general goal of music synchronization is to automatically align the multiple information sources such as audio recordings, MIDI files, or digitized sheet music related to a given musical work. In computing such alignments, one typically has to face a delicate tradeoff between robustness and accuracy. In this paper, we introduce novel audio features that combine the high temporal accuracy of onset features with the robustness of chroma features. We show how previous synchronization methods can be extended to make use of these new features. We report on experiments based on polyphonic Western music demonstrating the improvements of our proposed synchronization framework.


ACM Transactions on Graphics | 2011

Motion reconstruction using sparse accelerometer data

Jochen Tautges; Arno Zinke; Björn Krüger; Jan Baumann; Andreas Weber; Thomas Helten; Meinard Müller; Hans-Peter Seidel; Bernd Eberhardt

The development of methods and tools for the generation of visually appealing motion sequences using prerecorded motion capture data has become an important research area in computer animation. In particular, data-driven approaches have been used for reconstructing high-dimensional motion sequences from low-dimensional control signals. In this article, we contribute to this strand of research by introducing a novel framework for generating full-body animations controlled by only four 3D accelerometers that are attached to the extremities of a human actor. Our approach relies on a knowledge base that consists of a large number of motion clips obtained from marker-based motion capturing. Based on the sparse accelerometer input a cross-domain retrieval procedure is applied to build up a lazy neighborhood graph in an online fashion. This graph structure points to suitable motion fragments in the knowledge base, which are then used in the reconstruction step. Supported by a kd-tree index structure, our procedure scales to even large datasets consisting of millions of frames. Our combined approach allows for reconstructing visually plausible continuous motion streams, even in the presence of moderate tempo variations which may not be directly reflected by the given knowledge base.


IEEE Transactions on Audio, Speech, and Language Processing | 2008

Efficient Index-Based Audio Matching

Frank Kurth; Meinard Müller

Given a large audio database of music recordings, the goal of classical audio identification is to identify a particular audio recording by means of a short audio fragment. Even though recent identification algorithms show a significant degree of robustness towards noise, MP3 compression artifacts, and uniform temporal distortions, the notion of similarity is rather close to the identity. In this paper, we address a higher level retrieval problem, which we refer to as audio matching: given a short query audio clip, the goal is to automatically retrieve all excerpts from all recordings within the database that musically correspond to the query. In our matching scenario, opposed to classical audio identification, we allow semantically motivated variations as they typically occur in different interpretations of a piece of music. To this end, this paper presents an efficient and robust audio matching procedure that works even in the presence of significant variations, such as nonlinear temporal, dynamical, and spectral deviations, where existing algorithms for audio identification would fail. Furthermore, the combination of various deformation- and fault-tolerance mechanisms allows us to employ standard indexing techniques to obtain an efficient, index-based matching procedure, thus providing an important step towards semantically searching large-scale real-world music collections.


computer vision and pattern recognition | 2010

Multisensor-fusion for 3D full-body human motion capture

Gerard Pons-Moll; Andreas Baak; Thomas Helten; Meinard Müller; Hans-Peter Seidel; Bodo Rosenhahn

In this work, we present an approach to fuse video with orientation data obtained from extended inertial sensors to improve and stabilize full-body human motion capture. Even though video data is a strong cue for motion analysis, tracking artifacts occur frequently due to ambiguities in the images, rapid motions, occlusions or noise. As a complementary data source, inertial sensors allow for drift-free estimation of limb orientations even under fast motions. However, accurate position information cannot be obtained in continuous operation. Therefore, we propose a hybrid tracker that combines video with a small number of inertial units to compensate for the drawbacks of each sensor type: on the one hand, we obtain drift-free and accurate position information from video data and, on the other hand, we obtain accurate limb orientations and good performance under fast motions from inertial sensors. In several experiments we demonstrate the increased performance and stability of our human motion tracker.


symposium on computer animation | 2009

Efficient and robust annotation of motion capture data

Meinard Müller; Andreas Baak; Hans-Peter Seidel

In view of increasing collections of available 3D motion capture (mocap) data, the task of automatically annotating large sets of unstructured motion data is gaining in importance. In this paper, we present an efficient approach to label mocap data according to a given set of motion categories or classes, each specified by a suitable set of positive example motions. For each class, we derive a motion template that captures the consistent and variable aspects of a motion class in an explicit matrix representation. We then present a novel annotation procedure, where the unknown motion data is segmented and annotated by locally comparing it with the available motion templates. This procedure is supported by an efficient keyframe-based preprocessing step, which also significantly improves the annotation quality by eliminating false positive matches. As a further contribution, we introduce a genetic learning algorithm to automatically learn the necessary keyframes from the given example motions. For evaluation, we report on various experiments conducted on two freely available sets of motion capture data (CMU and HDM05).

Collaboration


Dive into the Meinard Müller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian Ewert

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Driedger

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge