Meiou Dai
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meiou Dai.
Journal of Biological Chemistry | 2008
Eftihia Cocolakis; Meiou Dai; Loren Drevet; Joanne Ho; Eric Haines; Suhad Ali; Jean-Jacques Lebrun
Both the transforming growth factor-β (TGFβ)/Smad and the prolactin/JAK/STAT pathway are critical to the proper development, maintenance, and function of the mammary epithelial tissue. Interestingly, opposing physiological effects between these two signaling pathways are prominent in the regulation of mammary gland development. However, the exact nature of the biological network existing between the Smad and STAT signal transduction pathways has remained elusive. We identified a novel regulatory cross-talk mechanism by which TGFβ-induced Smad signaling acts to antagonize prolactin-mediated JAK/STAT signaling and expression of target genes. Furthermore, we found activin, another member of the TGFβ family, to also efficiently block STAT5 signaling and β-casein expression in mammary epithelial cells. Our results indicate that ligand-induced activation of Smad2, -3, and -4 by activin and TGFβ leads to a direct inhibition of STAT5 transactivation and STAT5-mediated transcription of the downstream target genes, β-casein and cyclin D1, thereby blocking vital processes for mammary gland growth and differentiation. Finally, we unveiled the mechanism by which these two signaling cascades antagonize their effects, and we found that activated Smads inhibit STAT5 association with its co-activator CREB-binding protein, thus blocking STAT5 transactivation of its target genes and leading to inhibition of mammary gland differentiation and lactation.
Journal of Biological Chemistry | 2013
Nadège Fils-Aimé; Meiou Dai; Jimin Guo; Mayada El-Mousawi; Bora Kahramangil; Jean-Charles Neel; Jean-Jacques Lebrun
Background: TGF-β promotes cell migration in advanced breast cancer. Results: TGF-β down-regulates miR-584, leading to a PHACTR1 overexpression, and both are involved in cell migration and actin reorganization. Conclusion: The regulation of miR-584 and regulation of its novel target PHACTR1 are necessary steps for breast cancer cell migration. Significance: MicroRNAs offer an interesting therapeutic target in the treatment of advanced breast malignancy. TGF-β plays an important role in breast cancer progression as a prometastatic factor, notably through enhancement of cell migration. It is becoming clear that microRNAs, a new class of small regulatory molecules, also play crucial roles in mediating tumor formation and progression. We found TGF-β to down-regulate the expression of the microRNA miR-584 in breast cancer cells. Furthermore, we identified PHACTR1, an actin-binding protein, to be positively regulated by TGF-β in a miR-584-dependent manner. Moreover, we found TGF-β-mediated down-regulation of miR-584 and increased expression of PHACTR1 to be required for TGF-β-induced cell migration of breast cancer cells. Indeed, both overexpression of miR-584 and knockdown of PHACTR1 resulted in a drastic reorganization of the actin cytoskeleton and reduced TGF-β-induced cell migration. Our data highlight a novel signaling route whereby TGF-β silences the expression of miR-584, resulting in enhanced PHACTR1 expression, and further leading to actin rearrangement and breast cancer cell migration.
Breast Cancer Research | 2013
Meiou Dai; Amal A Al-Odaini; Nadège Fils-Aimé; Manuel Villatoro; Jimin Guo; Ani Arakelian; Shafaat A. Rabbani; Suhad Ali; Jean Jacques Lebrun
IntroductionDeregulation of the cell cycle machinery is often found in human cancers. Modulations in the cell cycle regulator function and expression result not only in proliferative advantages, but also lead to tumor progression and invasiveness of the cancer. In particular, cyclin D1 and p21 are often over-expressed in human cancers, correlating with high tumor grade, poor prognosis and increased metastasis. This prompted us to investigate the role of the cyclin D1/p21 signaling axis downstream of transforming growth factor beta (TGFβ) in breast cancer progression.MethodsCyclins mRNA and protein expressions were assessed by quantitative real-time PCR and Western blot in triple negative breast cancer cell lines. Co-localization and interaction between cyclin D1 and p21 were performed by immunocytochemistry and co-immunoprecipitation, respectively. Cell migration was assessed by wound healing and quantitative time-lapse imaging assays. In addition, the effects of cyclin D1 on cellular structure and actin organization were examined by staining with F-actin marker phalloidin and mesenchymal intermediate filament vimentin. Finally, a mammary fat pad xenograft mouse model was used to assess mammary tumor growth and local invasion.ResultsWe found TGFβ to specifically up-regulate the expression of cyclin D1 in triple negative breast cancer cells. Induction of cyclin D1 is also required for TGFβ-mediated cell migration. Suppression of cyclin D1 expression not only resulted in a rounded and epithelial-like phenotype, but also prevented TGFβ-induced vimentin and F-actin co-localization at the cell edge as well as invadopodia formation. Furthermore, TGFβ promoted the nuclear co-localization and physical interaction between cyclin D1 and p21. The co-expression of cyclin D1 and p21 proteins are required for the initial steps of tumor development, as double knockdown of these two molecules prevented primary tumor formation in a Xenograft mouse model. Moreover, the in vivo studies indicated that locally advanced features of the invasive tumors, including skeletal muscle, mammary fat pad and lymphovascular invasion, as well as ulcerated skin, were attenuated in the absence of cyclin D1 and p21.ConclusionsThus, our findings highlight the cyclin D1/p21 signaling axis as a critical regulator of TGFβ-mediated tumor growth initiation and local tumor cell invasion, both in vitro and in vivo.
Breast Cancer Research | 2012
Meiou Dai; Amal A Al-Odaini; Ani Arakelian; Shafaat A. Rabbani; Suhad Ali; Jean-Jacques Lebrun
IntroductionTumor cell migration and invasion are critical initiation steps in the process of breast cancer metastasis, the primary cause of breast cancer morbidity and death. Here we investigated the role of p21Cip1 (p21), a member of the core cell cycle machinery, in transforming growth factor-beta (TGFβ)-mediated breast cancer cell migration and invasion.MethodsA mammary fat pad xenograft mouse model was used to assess the mammary tumor growth and local invasion. The triple negative human breast cancer cell lines MDA-MB231 and its sub-progenies SCP2 and SCP25, SUM159PT, SUM149PT, SUM229PE and SUM1315MO2 were treated with 5 ng/ml TGFβ and the protein expression levels were measured by Western blot. Cell migration and invasion were examined using the scratch/wound healing and Transwell assay. TGFβ transcriptional activity was measured by a TGFβ/Smad reporter construct (CAGA12-luc) using luciferase assay. q-PCR was used for assessing TGFβ downstream target genes. The interactions among p21, p/CAF and Smad3 were performed by co-immunoprecipitation. In addition, Smad3 on DNA binding ability was measured by DNA immunoprecipitation using biotinylated Smad binding element DNA probes. Finally, the association among active TGFβ/Smad signaling, p21 and p/CAF with lymph node metastasis was examined by immunohistochemistry in tissue microarray containing 50 invasive ductal breast tumors, 25 of which are lymph node positive.ResultsWe found p21 expression to correlate with poor overall and distant metastasis free survival in breast cancer patients. Furthermore, using xenograft animal models and in vitro studies, we found p21 to be essential for tumor cell invasion. The invasive effects of p21 were found to correlate with Smad3, and p/CAF interaction downstream of TGFβ. p21 and p/CAF regulates TGFβ-mediated transcription of pro-metastatic genes by controlling Smad3 acetylation, DNA binding and transcriptional activity. In addition, we found that active TGFβ/Smad signaling correlates with high p21 and p/CAF expression levels and lymph node involvement using tissue microarrays from breast cancer patients.ConclusionsTogether these results highlight an important role for p21 and p/CAF in promoting breast cancer cell migration and invasion at the transcriptional level and may open new avenues for breast cancer therapy.
Scientific Reports | 2016
Meiou Dai; Chenjing Zhang; Ayad Ali; Xinyuan Hong; Jun Tian; Chieh Lo; Nadège Fils-Aimé; Sergio A. Burgos; Suhad Ali; Jean-Jacques Lebrun
Triple negative breast cancers exhibit very aggressive features and poor patient outcomes. These tumors are enriched in cancer stem cells and exhibit resistance to most treatments and chemotherapy. In this study, we found the cyclin-dependent kinase (CDK4) to act as a cancer stem cell regulator and novel prognostic marker in triple negative breast cancers. We found CDK4 to be highly expressed in these tumors and its expression to correlate with poor overall and relapse free survival outcomes, high tumor grade and poor prognostic features of triple negative breast cancer patients. Moreover, we found that blocking CDK4 expression or kinase activity, using a pharmacological inhibitor prevented breast cancer stem cell self-renewal. Interestingly, suppression of CDK4 expression or kinase activity reversed the basal-B TNBC mesenchymal phenotype to an epithelial- and luminal-like phenotype which correlates with better clinical prognosis. Finally, blocking CDK4 activity efficiently eliminated both normal and chemotherapy-resistant cancer cells in triple negative breast cancers, highlighting CDK4 as a promising novel therapeutic target for these aggressive breast tumors.
Scientific Reports | 2017
Jun Tian; Mahmood Y. Hachim; Ibrahim Y. Hachim; Meiou Dai; Chieh Lo; Fatmah Al Raffa; Suhad Ali; Jean Jacques Lebrun
Triple negative breast cancer (TNBC), an aggressive subtype of breast cancer, display poor prognosis and exhibit resistance to conventional therapies, partly due to an enrichment in breast cancer stem cells (BCSCs). Here, we investigated the role of the cyclooxygenase-2 (COX-2), a downstream target of TGFβ, in regulating BCSCs in TNBC. Bioinformatics analysis revealed that COX-2 is highly expressed in TNBC and that its expression correlated with poor survival outcome in basal subtype of breast cancer. We also found TGFβ-mediated COX-2 expression to be Smad3-dependent and to be required for BCSC self-renewal and expansion in TNBCs. Knocking down COX-2 expression strikingly blocked TGFβ-induced tumorsphere formation and TGFβ-induced enrichment of the two stem-like cell populations, CD24lowCD44high and ALDH+ BCSCs. Blocking COX-2 activity, using a pharmacological inhibitor also prevented TGFβ-induced BCSC self-renewal. Moreover, we found COX-2 to be required for TGFβ-induced expression of mesenchymal and basal breast cancer markers. In particular, we found that TGFβ-induced expression of fibronectin plays a central role in TGFβ-mediated breast cancer stemness. Together, our results describe a novel role for COX-2 in mediating the TGFβ effects on BCSC properties and imply that targeting the COX-2 pathway may prove useful for the treatment of TNBC by eliminating BCSCs.
Breast Cancer Research | 2014
Jimin Guo; Lucie Canaff; Charles V. Rajadurai; Nadège Fils-Aimé; Jun Tian; Meiou Dai; Juliana Korah; Manuel Villatoro; Morag Park; Suhad Ali; Jean-Jacques Lebrun
IntroductionThis study helps to define the implications of breast cancer anti-estrogen resistance 3 (BCAR3) in breast cancer and extends the current understanding of its molecular mechanism of action. BCAR3 has been shown to promote cell proliferation, migration and attachment to extracellular matrix components. However, in a cohort of metastatic breast cancer patients who received tamoxifen treatment, high BCAR3 mRNA levels were associated with favorable progression-free survival outcome. These results suggest that, besides its established roles, BCAR3 may have additional mechanisms of action that regulate breast cancer aggressive phenotype. In this study, we investigated whether BCAR3 is a novel antagonist of the canonical transforming growth factor β (TGFβ) pathway, which induces potent migration and invasion responses in breast cancer cells.MethodsWe surveyed functional genomics databases for correlations between BCAR3 expression and disease outcomes of breast cancer patients. We also studied how BCAR3 could regulate the TGFβ/Smad signaling axis using Western blot analysis, coimmunoprecipitation and luciferase assays. In addition, we examined whether BCAR3 could modulate TGFβ-induced cell migration and invasion by using an automated imaging system and a confocal microscopy imaging–based matrix degradation assay, respectively.ResultsRelatively low levels of BCAR3 expression in primary breast tumors correlate with poor distant metastasis-free survival and relapse-free survival outcomes. We also found a strong correlation between the loss of heterozygosity at BCAR3 gene alleles and lymph node invasion in human breast cancer, further suggesting a role for BCAR3 in preventing disease progression. In addition, we found BCAR3 to inhibit Smad activation, Smad-mediated gene transcription, Smad-dependent cell migration and matrix digestion in breast cancer cells. Furthermore, we found BCAR3 to be downregulated by TGFβ through proteasome degradation, thus defining a novel positive feedback loop mechanism downstream of the TGFβ/Smad signaling pathway.ConclusionBCAR3 is considered to be associated with aggressive breast cancer phenotypes. However, our results indicate that BCAR3 acts as a putative suppressor of breast cancer progression by inhibiting the prometastatic TGFβ/Smad signaling pathway in invasive breast tumors. These data provide new insights into BCAR3’s molecular mechanism of action and highlight BCAR3 as a novel TGFβ/Smad antagonist in breast cancer.
Journal of Biological Chemistry | 2012
Cheng-I J. Ma; Cyril Martin; Zhong Ma; Anouar Hafiane; Meiou Dai; Jean-Jacques Lebrun; Robert S. Kiss
Background: The low density lipoprotein receptor-related protein 1 (LRP1) is a transforming growth factor β (TGF-β) receptor in ovarian cells. Results: GULP is an adapter to LRP1 and mediates TGF-β signaling in signaling-competent early endosomes. Conclusion: GULP positively regulates TGF-β signaling in ovarian cells. Significance: GULP is poorly expressed in ovarian cancer cells and is a target for TGF-β-mediated growth inhibition. Transforming growth factor β (TGF-β) is a key regulatory molecule with pleiotropic effects on cell growth, migration, and invasion. As a result, impairment of proper TGF-β signaling is central to tumorigenesis and metastasis. The TGF-β receptor V (TGFBRV or LRP1) has been shown to be responsible for TGF-β-mediated cell growth inhibition in Chinese hamster ovary (CHO) cells. The LRP1 adapter protein GULP mediates internalization of the various LRP1-specific ligands, and we hypothesize that GULP acts as a novel regulator of TGF-β signaling in ovarian cells. CHO cells that overexpress exogenous GULP (FL) demonstrate enhancement in growth inhibition, migration, and invasion from TGF-β treatment, whereas cells that lack GULP (AS) show impairment of growth inhibition and decreased migration and invasion. The enhanced TGF-β response in FL cells was confirmed by a prolonged TGF-β-induced SMAD3 phosphorylation, whereas a shortening of the phosphorylation event is observed in AS cells. Mechanistically, the presence of GULP retains the TGF-β in a signaling-competent early endosome for enhanced signaling. To address this mechanism in a physiological setting, TGF-β insensitive ovarian adenocarcinoma cells (HEY) have a very low GULP expression level, similar to the observation made in a wide selection of human ovarian adenocarcinomas. Transfection of GULP into the HEY cells restored the TGF-β responsiveness, as measured by SMAD3 phosphorylation and impairment of cell growth. Because GULP expression positively regulates TGF-β signaling leading to growth inhibition, this may represent an attractive target to achieve TGF-β responsiveness in ovarian cells.
Cellular Signalling | 2018
Jun Tian; Amal A Al-Odaini; Yun Wang; Juliana Korah; Meiou Dai; Lan Xiao; Suhad Ali; Jean-Jacques Lebrun
The invasive and metastatic phenotypes of breast cancer correlate with high recurrence rates and poor survival outcomes. Transforming growth factor-β (TGFβ) promotes tumor progression and metastasis in aggressive breast cancer. Here, we identified the kisspeptin KiSS1 as a downstream target of canonical TGFβ/Smad2 pathway in triple negative breast cancer cells. We also found KiSS1 expression to be required for TGFβ-induced cancer cell invasion. Indeed, knockdown expression of KiSS1 blocked TGFβ-mediated cancer cell invasion as well as metalloproteinase (MMP9) expression and activity. Interestingly, Kisspeptin-10 (KP-10), the smallest active form of kisspeptin also stimulates cancer cell invasive behavior through activation of MAPK/Erk pathway. We described a positive feedback loop between KiSS1 and p21 downstream of TGFβ, further contributing to TGFβ-induced cancer cell invasion. Lastly, we explored both the clinical utility of KiSS1 as a lymph node involvement predictive tool and its potential as a therapeutic target. We found KiSS1 high expression to correlate with lymph node positive status. Furthermore, blocking KiSS1 using a specific small peptide antagonist (p234) impaired TGFβ-mediated cell invasion and MMP9 induction. Together, our results define an essential role of KiSS1 in regulating TGFβ pro-invasive effects and define KiSS1 as a therapeutic new target for triple negative breast cancer.
Cancer Research | 2018
Jun Tian; Chieh Lo; Fatmah Al Raffa; Meiou Dai; Jean-Jacques Lebrun