Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meir Wetzler is active.

Publication


Featured researches published by Meir Wetzler.


Journal of Clinical Oncology | 2010

IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

Guido Marcucci; Kati Maharry; Yue-Zhong Wu; Michael D. Radmacher; Krzysztof Mrózek; Dean Margeson; Kelsi B. Holland; Susan P. Whitman; Heiko Becker; Sebastian Schwind; Klaus H. Metzeler; Bayard L. Powell; Thomas H. Carter; Jonathan E. Kolitz; Meir Wetzler; Andrew J. Carroll; Maria R. Baer; Michael A. Caligiuri; Richard A. Larson; Clara D. Bloomfield

PURPOSE To analyze the frequency and associations with prognostic markers and outcome of mutations in IDH genes encoding isocitrate dehydrogenases in adult de novo cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS Diagnostic bone marrow or blood samples from 358 patients were analyzed for IDH1 and IDH2 mutations by DNA polymerase chain reaction amplification/sequencing. FLT3, NPM1, CEBPA, WT1, and MLL mutational analyses and gene- and microRNA-expression profiling were performed centrally. Results IDH mutations were found in 33% of the patients. IDH1 mutations were detected in 49 patients (14%; 47 with R132). IDH2 mutations, previously unreported in AML, were detected in 69 patients (19%; 13 with R172 and 56 with R140). R172 IDH2 mutations were mutually exclusive with all other prognostic mutations analyzed. Younger age (< 60 years), molecular low-risk (NPM1-mutated/FLT3-internal tandem duplication-negative) IDH1-mutated patients had shorter disease-free survival than molecular low-risk IDH1/IDH2-wild-type (wt) patients (P = .046). R172 IDH2-mutated patients had lower complete remission rates than IDH1/IDH2wt patients (P = .007). Distinctive microarray gene- and microRNA-expression profiles accurately predicted R172 IDH2 mutations. The highest expressed gene and microRNAs in R172 IDH2-mutated patients compared with the IDH1/IDH2wt patients were APP (previously associated with complex karyotype AML) and miR-1 and miR-133 (involved in embryonal stem-cell differentiation), respectively. CONCLUSION IDH1 and IDH2 mutations are recurrent in CN-AML and have an unfavorable impact on outcome. The R172 IDH2 mutations, previously unreported in AML, characterize a novel subset of CN-AML patients lacking other prognostic mutations and associate with unique gene- and microRNA-expression profiles that may lead to the discovery of novel, therapeutically targetable leukemogenic mechanisms.


Journal of Clinical Oncology | 2010

Favorable Prognostic Impact of NPM1 Mutations in Older Patients With Cytogenetically Normal De Novo Acute Myeloid Leukemia and Associated Gene- and MicroRNA-Expression Signatures: A Cancer and Leukemia Group B Study

Heiko Becker; Guido Marcucci; Kati Maharry; Michael D. Radmacher; Krzysztof Mrózek; Dean Margeson; Susan P. Whitman; Yue-Zhong Wu; Sebastian Schwind; Peter Paschka; Bayard L. Powell; Thomas H. Carter; Jonathan E. Kolitz; Meir Wetzler; Andrew J. Carroll; Maria R. Baer; Michael A. Caligiuri; Richard A. Larson; Clara D. Bloomfield

PURPOSE To analyze the prognostic significance of NPM1 mutations, and the associated gene- and microRNA-expression signatures in older patients with de novo, cytogenetically normal acute myeloid leukemia (CN-AML) treated with intensive chemotherapy. PATIENTS AND METHODS One hundred forty-eight adults age >or= 60 years with de novo CN-AML, enrolled onto Cancer and Leukemia Group B protocols 9720 and 10201, were studied at diagnosis for NPM1, FLT3, CEBPA, and WT1 mutations, and gene- and microRNA-expression profiles. RESULTS Patients with NPM1 mutations (56%) had higher complete remission (CR) rates (84% v 48%; P < .001) and longer disease-free survival (DFS; P = .047; 3-year rates, 23% v 10%) and overall survival (OS; P < .001; 3-year rates, 35% v 8%) than NPM1 wild-type patients. In multivariable analyses, NPM1 mutations remained independent predictors for higher CR rates (P < .001) and longer DFS (P = .004) and OS (P < .001), after adjustment for other prognostic clinical and molecular variables. Unexpectedly, the prognostic impact of NPM1 mutations was mainly observed in patients >or= 70 years. Gene- and microRNA-expression profiles associated with NPM1 mutations were similar across older patient age groups and similar to those in younger (< 60 years) patients with CN-AML. These profiles were characterized by upregulation of HOX genes and their embedded microRNAs and downregulation of the prognostically adverse MN1, BAALC, and ERG genes. CONCLUSION NPM1 mutations have favorable prognostic impact in older patients with CN-AML, especially those age >or= 70 years. The gene- and microRNA-expression profiles suggest that NPM1 mutations constitute a marker defining a biologically homogeneous entity in CN-AML that might be treated with specific and/or targeted therapies across age groups.


Journal of Clinical Oncology | 2011

TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study.

Klaus H. Metzeler; Kati Maharry; Michael D. Radmacher; Krzysztof Mrózek; Dean Margeson; Heiko Becker; John Curfman; Kelsi B. Holland; Sebastian Schwind; Susan P. Whitman; Yue-Zhong Wu; William Blum; Bayard L. Powell; Thomas H. Carter; Meir Wetzler; Joseph O. Moore; Jonathan E. Kolitz; Maria R. Baer; Andrew J. Carroll; Richard A. Larson; Michael A. Caligiuri; Guido Marcucci; Clara D. Bloomfield

PURPOSE To determine the frequency of TET2 mutations, their associations with clinical and molecular characteristics and outcome, and the associated gene- and microRNA-expression signatures in patients with primary cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS Four-hundred twenty-seven patients with CN-AML were analyzed for TET2 mutations by polymerase chain reaction and direct sequencing and for established prognostic gene mutations. Gene- and microRNA-expression profiles were derived using microarrays. RESULTS TET2 mutations, found in 23% of patients, were associated with older age (P < .001) and higher pretreatment WBC (P = .04) compared with wild-type TET2 (TET2-wt). In the European LeukemiaNet (ELN) favorable-risk group (patients with CN-AML who have mutated CEBPA and/or mutated NPM1 without FLT3 internal tandem duplication [FLT3-ITD]), TET2-mutated patients had shorter event-free survival (EFS; P < .001) because of a lower complete remission (CR) rate (P = .007), and shorter disease-free survival (DFS; P = .003), and also had shorter overall survival (P = .001) compared with TET2-wt patients. TET2 mutations were not associated with outcomes in the ELN intermediate-I-risk group (CN-AML with wild-type CEBPA and wild-type NPM1 and/or FLT3-ITD). In multivariable models, TET2 mutations were associated with shorter EFS (P = .004), lower CR rate (P = .03), and shorter DFS (P = .05) only among favorable-risk CN-AML patients. We identified a TET2 mutation-associated gene-expression signature in favorable-risk but not in intermediate-I-risk patients and found distinct mutation-associated microRNA signatures in both ELN groups. CONCLUSION TET2 mutations improve the ELN molecular-risk classification in primary CN-AML because of their adverse prognostic impact in an otherwise favorable-risk patient subset. Our data suggest that these patients may be candidates for alternative therapies.


Blood | 2011

ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category

Klaus H. Metzeler; Heiko Becker; Kati Maharry; Michael D. Radmacher; Jessica Kohlschmidt; Krzysztof Mrózek; Deedra Nicolet; Susan P. Whitman; Yue-Zhong Wu; Sebastian Schwind; Bayard L. Powell; Thomas H. Carter; Meir Wetzler; Joseph O. Moore; Jonathan E. Kolitz; Maria R. Baer; Andrew J. Carroll; Richard A. Larson; Michael A. Caligiuri; Guido Marcucci; Clara D. Bloomfield

The associations of mutations in the enhancer of trithorax and polycomb family gene ASXL1 with pretreatment patient characteristics, outcomes, and gene-/microRNA-expression profiles in primary cytogenetically normal acute myeloid leukemia (CN-AML) are unknown. We analyzed 423 adult patients for ASXL1 mutations, other prognostic gene mutations, and gene-/microRNA-expression profiles. ASXL1 mutations were 5 times more common in older (≥ 60 years) patients (16.2%) than those younger than 60 years (3.2%; P < .001). Among older patients, ASXL1 mutations associated with wild-type NPM1 (P < .001), absence of FLT3-internal tandem duplications (P = .002), mutated CEBPA (P = .01), and with inferior complete remission (CR) rate (P = .04), disease-free survival (DFS; P = .03), overall survival (OS; P = .006), and event-free survival (EFS; P = .002). Within the European LeukemiaNet (ELN) genetic categories of older CN-AML, ASXL1 mutations associated with inferior CR rate (P = .02), OS (P < .001), and EFS (P < .001) among ELN Favorable, but not among ELN Intermediate-I patients. Multivariable analyses confirmed associations of ASXL1 mutations with unfavorable CR rate (P = .03), DFS (P < .001), OS (P < .001), and EFS (P < .001) among ELN Favorable patients. We identified an ASXL1 mutation-associated gene-expression signature, but no microRNA-expression signature. This first study of ASXL1 mutations in primary CN-AML demonstrates that ASXL1-mutated older patients, particularly within the ELN Favorable group, have unfavorable outcomes and may be candidates for experimental treatment approaches.


Blood | 2015

Acute myeloid leukemia ontogeny is defined by distinct somatic mutations

Robert Lindsley; Brenton G. Mar; Emanuele Mazzola; Peter Grauman; Shareef S; Steven L. Allen; Arnaud Pigneux; Meir Wetzler; Robert K. Stuart; Harry P. Erba; Lloyd E. Damon; Bayard L. Powell; Neal I. Lindeman; David P. Steensma; Martha Wadleigh; Daniel J. DeAngelo; Donna Neuberg; Richard Stone; Benjamin L. Ebert

Acute myeloid leukemia (AML) can develop after an antecedent myeloid malignancy (secondary AML [s-AML]), after leukemogenic therapy (therapy-related AML [t-AML]), or without an identifiable prodrome or known exposure (de novo AML). The genetic basis of these distinct pathways of AML development has not been determined. We performed targeted mutational analysis of 194 patients with rigorously defined s-AML or t-AML and 105 unselected AML patients. The presence of a mutation in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2 was >95% specific for the diagnosis of s-AML. Analysis of serial samples from individual patients revealed that these mutations occur early in leukemogenesis and often persist in clonal remissions. In t-AML and elderly de novo AML populations, these alterations define a distinct genetic subtype that shares clinicopathologic properties with clinically confirmed s-AML and highlights a subset of patients with worse clinical outcomes, including a lower complete remission rate, more frequent reinduction, and decreased event-free survival. This trial was registered at www.clinicaltrials.gov as #NCT00715637.


Journal of Clinical Oncology | 2012

Age-Related Prognostic Impact of Different Types of DNMT3A Mutations in Adults With Primary Cytogenetically Normal Acute Myeloid Leukemia

Guido Marcucci; Klaus H. Metzeler; Sebastian Schwind; Heiko Becker; Kati Maharry; Krzysztof Mrózek; Michael D. Radmacher; Jessica Kohlschmidt; Deedra Nicolet; Susan P. Whitman; Yue-Zhong Wu; Bayard L. Powell; Thomas H. Carter; Jonathan E. Kolitz; Meir Wetzler; Andrew J. Carroll; Maria R. Baer; Joseph O. Moore; Michael A. Caligiuri; Richard A. Larson; Clara D. Bloomfield

PURPOSE To determine the frequency of DNMT3A mutations, their associations with clinical and molecular characteristics and outcome, and the associated gene- and microRNA-expression signatures in primary cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS Four hundred fifteen previously untreated adults were analyzed for DNMT3A mutations and established prognostic gene mutations and expression markers. Gene- and microRNA-expression profiles were derived using microarrays. RESULTS Younger (< 60 years; n = 181) and older (≥ 60 years; n = 234) patients had similar frequencies of DNMT3A mutations (35.3% v 33.3%). Missense mutations affecting arginine codon 882 (R882-DNMT3A) were more common (n = 92; 62%) than those affecting other codons (non-R882-DNMT3A). DNMT3A-mutated patients did not differ regarding complete remission rate, but had shorter disease-free survival (DFS; P = .03) and, by trend, overall survival (OS; P = .07) than DNMT3A-wild-type patients. In multivariable analyses, DNMT3A mutations remained associated with shorter DFS (P = .01), but not with shorter OS. When analyzed separately, the two DNMT3A mutation types had different significance by age group. Younger patients with non-R882-DNMT3A mutations had shorter DFS (P = .002) and OS (P = .02), whereas older patients with R882-DNMT3A mutations had shorter DFS (P = .005) and OS (P = .002) after adjustment for other clinical and molecular prognosticators. Gene- and microRNA-expression signatures did not accurately predict DNMT3A mutational status. CONCLUSION DNMT3A mutations are frequent in CN-AML, and their clinical significance seems to be age dependent. DNMT3A-R882 mutations are associated with adverse prognosis in older patients, and non-R882-DNMT3A mutations are associated with adverse prognosis in younger patients. Low accuracy of gene- and microRNA-expression signatures in predicting DNMT3A mutation status suggested that the role of these mutations in AML remains to be elucidated.


Journal of Clinical Investigation | 1993

Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation.

Meir Wetzler; Moshe Talpaz; R A Van Etten; C. Hirsh-Ginsberg; Miloslav Beran; Razelle Kurzrock

We used specific antisera and immunohistochemical methods to investigate the subcellular localization and expression of Bcr, Abl, and Bcr-Abl proteins in leukemic cell lines and in fresh human leukemic and normal samples at various stages of myeloid differentiation. Earlier studies of the subcellular localization of transfected murine type IV c-Abl protein in fibroblasts have shown that this molecule resides largely in the nucleus, whereas transforming deletion variants are localized exclusively in the cytoplasm. Here, we demonstrate that the murine type IV c-Abl protein is also found in the nucleus when overexpressed in a mouse hematopoietic cell line. However, in both normal and leukemic human hematopoietic cells, c-Abl is discerned predominantly in the cytoplasm, with nuclear staining present, albeit at a lower level. In contrast, normal endogenous Bcr protein, as well as the aberrant p210BCR-ABL and p190BCR-ABL proteins consistently localize to the cytoplasm in both cell lines and fresh cells. The results with p210BCR-ABL were confirmed in a unique Ph1-positive chronic myelogenous leukemia (CML) cell line, KBM5, which lacks the normal chromosome 9 and hence the normal c-Abl product. Because the p210BCR-ABL protein appears cytoplasmic in both chronic phase and blast crisis CML cells, as does the p190BCR-ABL in Ph1-positive acute leukemia, a change in subcellular location of Bcr-Abl proteins between cytoplasm and nucleus cannot explain the different spectrum of leukemias associated with p210 and p190, nor the transition from the chronic to the acute leukemia phenotype seen in CML. Further analysis of fresh CML and normal hematopoietic bone marrow cells reveals that p210BCR-ABL, as well as the normal Bcr and Abl proteins, are expressed primarily in the early stages of myeloid maturation, and that levels of expression are reduced significantly as the cells mature to polymorphonuclear leukocytes. Similarly, a decrease in Bcr and Abl levels occurs in HL-60 cells induced by DMSO to undergo granulocytic differentiation. The action of p210BCR-ABL and its normal counterparts may, therefore, take place during the earlier stages of myeloid development.


Nature | 2015

Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS.

Jan Krönke; Emma C. Fink; Paul Hollenbach; Kyle J. MacBeth; Slater N. Hurst; Namrata D. Udeshi; Philip Chamberlain; D. R. Mani; Hon Wah Man; Anita Gandhi; Tanya Svinkina; Rebekka K. Schneider; Marie McConkey; Marcus Järås; Elizabeth A. Griffiths; Meir Wetzler; Lars Bullinger; Brian E. Cathers; Steven A. Carr; Rajesh Chopra; Benjamin L. Ebert

Lenalidomide is a highly effective treatment for myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)). Here, we demonstrate that lenalidomide induces the ubiquitination of casein kinase 1A1 (CK1α) by the E3 ubiquitin ligase CUL4–RBX1–DDB1–CRBN (known as CRL4CRBN), resulting in CK1α degradation. CK1α is encoded by a gene within the common deleted region for del(5q) MDS and haploinsufficient expression sensitizes cells to lenalidomide therapy, providing a mechanistic basis for the therapeutic window of lenalidomide in del(5q) MDS. We found that mouse cells are resistant to lenalidomide but that changing a single amino acid in mouse Crbn to the corresponding human residue enables lenalidomide-dependent degradation of CK1α. We further demonstrate that minor side chain modifications in thalidomide and a novel analogue, CC-122, can modulate the spectrum of substrates targeted by CRL4CRBN. These findings have implications for the clinical activity of lenalidomide and related compounds, and demonstrate the therapeutic potential of novel modulators of E3 ubiquitin ligases.


Cancer | 2010

Adult acute lymphoblastic leukemia: Concepts and strategies

Stefan Faderl; Susan O'Brien; Ching-Hon Pui; Wendy Stock; Meir Wetzler; Dieter Hoelzer; Hagop M. Kantarjian

Acute lymphoblastic leukemia (ALL), a clonal expansion of hematopoietic blasts, is a highly heterogeneous disease comprising many entities for which distinct treatment strategies are pursued. Although ALL is a success story in pediatric oncology, results in adults lag behind those in children. An expansion of new drugs, more reliable immunologic and molecular techniques for the assessment of minimal residual disease, and efforts at more precise risk stratification are generating new aspects of adult ALL therapy. For this review, the authors summarized pertinent and recent literature on ALL biology and therapy, and they discuss current strategies and potential implications of novel approaches to the management of adult ALL. Cancer 2010.


Blood | 2010

FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study.

Susan P. Whitman; Kati Maharry; Michael D. Radmacher; Heiko Becker; Krzysztof Mrózek; Dean Margeson; Kelsi B. Holland; Yue-Zhong Wu; Sebastian Schwind; Klaus H. Metzeler; Jing Wen; Maria R. Baer; Bayard L. Powell; Thomas H. Carter; Jonathan E. Kolitz; Meir Wetzler; Joseph O. Moore; Richard Stone; Andrew J. Carroll; Richard A. Larson; Michael A. Caligiuri; Guido Marcucci; Clara D. Bloomfield

The clinical impact of FLT3-internal tandem duplications (ITDs), an adverse prognostic marker in adults aged < 60 years with primary cytogenetically normal acute myeloid leukemia (CN-AML), requires further investigation in older patients. In CN-AML patients aged ≥ 60 years treated on Cancer and Leukemia Group B frontline trials, we found that FLT3-ITD remained associated with shorter disease-free survival (P < .001; hazard ratio = 2.10) and overall survival (P < .001; hazard ratio = 1.97) in multivariable analyses. This impact on shorter disease-free survival and overall survival was in patients aged 60-69 (P < .001, each) rather than in those aged ≥ 70 years. An FLT3-ITD-associated gene-expression signature revealed overexpression of FLT3, homeobox genes (MEIS1, PBX3, HOXB3), and immunotherapeutic tar-gets (WT1, CD33) and underexpression of leukemia-associated (MLLT3, TAL1) and erythropoiesis-associated (GATA3, EPOR, ANK1, HEMGN) genes. An FLT3-ITD-associated microRNA-expression signature included overexpressed miR-155 and underexpressed miR-144 and miR-451. FLT3-ITD identifies older CN-AML patients with molecular high risk and is associated with gene- and microRNA-expression signatures that provide biologic insights for novel therapeutic approaches.

Collaboration


Dive into the Meir Wetzler's collaboration.

Top Co-Authors

Avatar

Eunice S. Wang

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurie A. Ford

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Hagop M. Kantarjian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheila N.J. Sait

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge