Meiyappan Lakshmanan
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meiyappan Lakshmanan.
Briefings in Bioinformatics | 2014
Meiyappan Lakshmanan; Geoffrey Koh; Bevan Kai-Sheng Chung; Dong-Yup Lee
Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to operational environment, user-interface and supported analysis algorithms. Presented herein is an in-depth evaluation of currently available FBA applications, focusing mainly on usability, functionality, graphical representation and inter-operability. Overall, most of the applications are able to perform basic features of model creation and FBA simulation. COBRA toolbox, OptFlux and FASIMU are versatile to support advanced in silico algorithms to identify environmental and genetic targets for strain design. SurreyFBA, WEbcoli, Acorn, FAME, GEMSiRV and MetaFluxNet are the distinct tools which provide the user friendly interfaces in model handling. In terms of software architecture, FBA-SimVis and OptFlux have the flexible environments as they enable the plug-in/add-on feature to aid prospective functional extensions. Notably, an increasing trend towards the implementation of more tailored e-services such as central model repository and assistance to collaborative efforts was observed among the web-based applications with the help of advanced web-technologies. Furthermore, most recent applications such as the Model SEED, FAME, MetaFlux and MicrobesFlux have even included several routines to facilitate the reconstruction of genome-scale metabolic models. Finally, a brief discussion on the future directions of FBA applications was made for the benefit of potential tool developers.
Metabolomics | 2016
Neil Swainston; Kieran Smallbone; Hooman Hefzi; Paul D. Dobson; Judy Brewer; Michael Hanscho; Daniel C. Zielinski; Kok Siong Ang; Natalie J. Gardiner; Jahir M. Gutierrez; Sarantos Kyriakopoulos; Meiyappan Lakshmanan; Shangzhong Li; Joanne K. Liu; Verónica S. Martínez; Camila A. Orellana; Lake-Ee Quek; Alex Thomas; Juergen Zanghellini; Nicole Borth; Dong-Yup Lee; Lars K. Nielsen; Douglas B. Kell; Nathan E. Lewis; Pedro Mendes
IntroductionThe human genome-scale metabolic reconstruction details all known metabolic reactions occurring in humans, and thereby holds substantial promise for studying complex diseases and phenotypes. Capturing the whole human metabolic reconstruction is an on-going task and since the last community effort generated a consensus reconstruction, several updates have been developed.ObjectivesWe report a new consensus version, Recon 2.2, which integrates various alternative versions with significant additional updates. In addition to re-establishing a consensus reconstruction, further key objectives included providing more comprehensive annotation of metabolites and genes, ensuring full mass and charge balance in all reactions, and developing a model that correctly predicts ATP production on a range of carbon sources.MethodsRecon 2.2 has been developed through a combination of manual curation and automated error checking. Specific and significant manual updates include a respecification of fatty acid metabolism, oxidative phosphorylation and a coupling of the electron transport chain to ATP synthase activity. All metabolites have definitive chemical formulae and charges specified, and these are used to ensure full mass and charge reaction balancing through an automated linear programming approach. Additionally, improved integration with transcriptomics and proteomics data has been facilitated with the updated curation of relationships between genes, proteins and reactions.ResultsRecon 2.2 now represents the most predictive model of human metabolism to date as demonstrated here. Extensive manual curation has increased the reconstruction size to 5324 metabolites, 7785 reactions and 1675 associated genes, which now are mapped to a single standard. The focus upon mass and charge balancing of all reactions, along with better representation of energy generation, has produced a flux model that correctly predicts ATP yield on different carbon sources.ConclusionThrough these updates we have achieved the most complete and best annotated consensus human metabolic reconstruction available, thereby increasing the ability of this resource to provide novel insights into normal and disease states in human. The model is freely available from the Biomodels database (http://identifiers.org/biomodels.db/MODEL1603150001).
Plant Physiology | 2013
Meiyappan Lakshmanan; Zhaoyang Zhang; Bijayalaxmi Mohanty; Jun-Young Kwon; Hong-Yeol Choi; Hyung-Jin Nam; Dong-Il Kim; Dong-Yup Lee
A metabolic/regulatory network of rice incorporates two important tissue types, germinating seeds and photorespiring leaves, is validated through experiments with rice suspension cultures, and applied to analyze metabolic capability under flooding and drought conditions. Rice (Oryza sativa) is one of the major food crops in world agriculture, especially in Asia. However, the possibility of subsequent occurrence of flood and drought is a major constraint to its production. Thus, the unique behavior of rice toward flooding and drought stresses has required special attention to understand its metabolic adaptations. However, despite several decades of research investigations, the cellular metabolism of rice remains largely unclear. In this study, in order to elucidate the physiological characteristics in response to such abiotic stresses, we reconstructed what is to our knowledge the first metabolic/regulatory network model of rice, representing two tissue types: germinating seeds and photorespiring leaves. The phenotypic behavior and metabolic states simulated by the model are highly consistent with our suspension culture experiments as well as previous reports. The in silico simulation results of seed-derived rice cells indicated (1) the characteristic metabolic utilization of glycolysis and ethanolic fermentation based on oxygen availability and (2) the efficient sucrose breakdown through sucrose synthase instead of invertase. Similarly, flux analysis on photorespiring leaf cells elucidated the crucial role of plastid-cytosol and mitochondrion-cytosol malate transporters in recycling the ammonia liberated during photorespiration and in exporting the excess redox cofactors, respectively. The model simulations also unraveled the essential role of mitochondrial respiration during drought stress. In the future, the combination of experimental and in silico analyses can serve as a promising approach to understand the complex metabolism of rice and potentially help in identifying engineering targets for improving its productivity as well as enabling stress tolerance.
Cell systems | 2016
Hooman Hefzi; Kok Siong Ang; Michael Hanscho; Aarash Bordbar; David E. Ruckerbauer; Meiyappan Lakshmanan; Camila A. Orellana; Deniz Baycin-Hizal; Yingxiang Huang; Daniel Ley; Verónica S. Martínez; Sarantos Kyriakopoulos; Natalia E. Jiménez; Daniel C. Zielinski; Lake-Ee Quek; Tune Wulff; Johnny Arnsdorf; Shangzhong Li; Jae Seong Lee; Giuseppe Paglia; Nicolás Loira; Philipp Spahn; Lasse Ebdrup Pedersen; Jahir M. Gutierrez; Zachary A. King; Anne Mathilde Lund; Harish Nagarajan; Alex Thomas; Alyaa M. Abdel-Haleem; Juergen Zanghellini
Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.
Biotechnology and Bioengineering | 2016
Minsuk Kim; Jeong Sang Yi; Meiyappan Lakshmanan; Dong-Yup Lee; Byung-Gee Kim
In silico model‐driven analysis using genome‐scale model of metabolism (GEM) has been recognized as a promising method for microbial strain improvement. However, most of the current GEM‐based strain design algorithms based on flux balance analysis (FBA) heavily rely on the steady‐state and optimality assumptions without considering any regulatory information. Thus, their practical usage is quite limited, especially in its application to secondary metabolites overproduction. In this study, we developed a transcriptomics‐based strain optimization tool (tSOT) in order to overcome such limitations by integrating transcriptomic data into GEM. Initially, we evaluated existing algorithms for integrating transcriptomic data into GEM using Streptomyces coelicolor dataset, and identified iMAT algorithm as the only and the best algorithm for characterizing the secondary metabolism of S. coelicolor. Subsequently, we developed tSOT platform where iMAT is adopted to predict the reaction states, and successfully demonstrated its applicability to secondary metabolites overproduction by designing actinorhodin (ACT), a polyketide antibiotic, overproducing strain of S. coelicolor. Mutants overexpressing tSOT targets such as ribulose 5‐phosphate 3‐epimerase and NADP‐dependent malic enzyme showed 2 and 1.8‐fold increase in ACT production, thereby validating the tSOT prediction. It is expected that tSOT can be used for solving other metabolic engineering problems which could not be addressed by current strain design algorithms, especially for the secondary metabolite overproductions. Biotechnol. Bioeng. 2016;113: 651–660.
Plant Physiology | 2015
Meiyappan Lakshmanan; Sun-Hyung Lim; Bijayalaxmi Mohanty; Jae Kwang Kim; Sun-Hwa Ha; Dong-Yup Lee
Combined in silico modeling and multiomics data analysis elucidate the transcriptional control of rice cellular metabolism upon light signaling. Light quality is an important signaling component upon which plants orchestrate various morphological processes, including seed germination and seedling photomorphogenesis. However, it is still unclear how plants, especially food crops, sense various light qualities and modulate their cellular growth and other developmental processes. Therefore, in this work, we initially profiled the transcripts of a model crop, rice (Oryza sativa), under four different light treatments (blue, green, red, and white) as well as in the dark. Concurrently, we reconstructed a fully compartmentalized genome-scale metabolic model of rice cells, iOS2164, containing 2,164 unique genes, 2,283 reactions, and 1,999 metabolites. We then combined the model with transcriptome profiles to elucidate the light-specific transcriptional signatures of rice metabolism. Clearly, light signals mediated rice gene expressions, differentially regulating numerous metabolic pathways: photosynthesis and secondary metabolism were up-regulated in blue light, whereas reserve carbohydrates degradation was pronounced in the dark. The topological analysis of gene expression data with the rice genome-scale metabolic model further uncovered that phytohormones, such as abscisate, ethylene, gibberellin, and jasmonate, are the key biomarkers of light-mediated regulation, and subsequent analysis of the associated genes’ promoter regions identified several light-specific transcription factors. Finally, the transcriptional control of rice metabolism by red and blue light signals was assessed by integrating the transcriptome and metabolome data with constraint-based modeling. The biological insights gained from this integrative systems biology approach offer several potential applications, such as improving the agronomic traits of food crops and designing light-specific synthetic gene circuits in microbial and mammalian systems.
Biotechnology and Bioengineering | 2016
Pranjul Mishra; Gyuyeon Park; Meiyappan Lakshmanan; Heeseok Lee; Hongweon Lee; Matthew Wook Chang; Chi Bun Ching; Jungoh Ahn; Dong-Yup Lee
Recently, the bio‐production of α,ω‐dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum‐based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω‐oxidation pathway where the terminal carbon of α‐fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome‐scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω‐oxidation pathway. Constraints‐based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of “citrate pyruvate cycle” is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long‐chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993–2004.
Plant Science | 2016
Bijayalaxmi Mohanty; Ai Kitazumi; C.Y. Maurice Cheung; Meiyappan Lakshmanan; Benildo G. de los Reyes; In-Cheol Jang; Dong-Yup Lee
In this study, we have integrated a rice genome-scale metabolic network and the transcriptome of a drought-tolerant rice line, DK151, to identify the major transcriptional regulators involved in metabolic adjustments necessary for adaptation to drought. This was achieved by examining the differential expressions of transcription factors and metabolic genes in leaf, root and young panicle of rice plants subjected to drought stress during tillering, booting and panicle elongation stages. Critical transcription factors such as AP2/ERF, bZIP, MYB and NAC that control the important nodes in the gene regulatory pathway were identified through correlative analysis of the patterns of spatio-temporal expression and cis-element enrichment. We showed that many of the candidate transcription factors involved in metabolic adjustments were previously linked to phenotypic variation for drought tolerance. This approach represents the first attempt to integrate models of transcriptional regulation and metabolic pathways for the identification of candidate regulatory genes for targeted selection in rice breeding.
Journal of Bioinformatics and Computational Biology | 2013
Meiyappan Lakshmanan; Bevan Kai-Sheng Chung; Chengcheng Liu; Seon-Won Kim; Dong-Yup Lee
Cofactors, such as NAD(H) and NADP(H), play important roles in energy transfer within the cells by providing the necessary redox carriers for a myriad of metabolic reactions, both anabolic and catabolic. Thus, it is crucial to establish the overall cellular redox balance for achieving the desired cellular physiology. Of several methods to manipulate the intracellular cofactor regeneration rates, altering the cofactor specificity of a particular enzyme is a promising one. However, the identification of relevant enzyme targets for such cofactor specificity engineering (CSE) is often very difficult and labor intensive. Therefore, it is necessary to develop more systematic approaches to find the cofactor engineering targets for strain improvement. Presented herein is a novel mathematical framework, cofactor modification analysis (CMA), developed based on the well-established constraints-based flux analysis, for the systematic identification of suitable CSE targets while exploring the global metabolic effects. The CMA algorithm was applied to E. coli using its genome-scale metabolic model, iJO1366, thereby identifying the growth-coupled cofactor engineering targets for overproducing four of its native products: acetate, formate, ethanol, and lactate, and three non-native products: 1-butanol, 1,4-butanediol, and 1,3-propanediol. Notably, among several target candidates for cofactor engineering, glyceraldehyde-3-phosphate dehydrogenase (GAPD) is the most promising enzyme; its cofactor modification enhanced both the desired product and biomass yields significantly. Finally, given the identified target, we further discussed potential mutational strategies for modifying cofactor specificity of GAPD in E. coli as suggested by in silico protein docking experiments.
BMC Systems Biology | 2015
Meiyappan Lakshmanan; Tae Yong Kim; Bevan Kai-Sheng Chung; Sang Yup Lee; Dong-Yup Lee
BackgroundRational design of microbial strains for enhanced cellular physiology through in silico analysis has been reported in many metabolic engineering studies. Such in silico techniques typically involve the analysis of a metabolic model describing the metabolic and physiological states under various perturbed conditions, thereby identifying genetic targets to be manipulated for strain improvement. More often than not, the activation/inhibition of multiple reactions is necessary to produce a predicted change for improvement of cellular properties or states. However, as it is more computationally cumbersome to simulate all possible combinations of reaction perturbations, it is desirable to consider alternative techniques for identifying such metabolic engineering targets.ResultsIn this study, we present the modified version of previously developed metabolite-centric approach, also known as flux-sum analysis (FSA), for identifying metabolic engineering targets. Utility of FSA was demonstrated by applying it to Escherichia coli, as case studies, for enhancing ethanol and succinate production, and reducing acetate formation. Interestingly, most of the identified metabolites correspond to gene targets that have been experimentally validated in previous works on E. coli strain improvement. A notable example is that pyruvate, the metabolite target for enhancing succinate production, was found to be associated with multiple reaction targets that were only identifiable through more computationally expensive means. In addition, detailed analysis of the flux-sum perturbed conditions also provided valuable insights into how previous metabolic engineering strategies have been successful in enhancing cellular physiology.ConclusionsThe application of FSA under the flux balance framework can identify novel metabolic engineering targets from the metabolite-centric perspective. Therefore, the current approach opens up a new research avenue for rational design and engineering of industrial microbes in the field of systems metabolic engineering.