Meiyong Liao
National Institute for Materials Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meiyong Liao.
Sensors | 2009
Tianyou Zhai; Xiaosheng Fang; Meiyong Liao; Xijin Xu; Haibo Zeng; Bando Yoshio; Dmitri Golberg
One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area.
Advanced Materials | 2012
Linfeng Hu; Jian Yan; Meiyong Liao; Hongjun Xiang; Xingao Gong; Lide Zhang; Xiaosheng Fang
A novel 1D/1D nanocomposite-based photodetector is successfully fabricated from high-crystalline ZnS/ZnO biaxial nanobelts for the first time. Optimized performance of the ZnS/ZnO nanobelt photodetector is much better than that of pure ZnS or ZnO nanostructures, with a wide-range UV-A light photoresponse, high sensitivity, and very fast response speed.
Advanced Materials | 2010
Liang Li; Peicai Wu; Xiaosheng Fang; Tianyou Zhai; Lun Dai; Meiyong Liao; Yasuo Koide; Hongqiang Wang; Yoshio Bando; Dmitri Golberg
The single crystalline CdS nanobelts were synthesized by an improved vapor-liquid-solid (VLS) process. Field emission measurements show that the nanostructures have a low turn-on field of 3.7 V&m-1 at a current density of 10 μA cm-1, a low threshold field of 9.3 V μm cm-1 and a high enhancement factor of 1298. When assembled into nanoscale visible light photodetectors, the CdS nanobelts showed good sensitivity and wavelength selectivity. The results imply that the present CdS nanobelts are excellent candidates for applications in high-performance field emitters and photodetectors.
Advanced Materials | 2010
Tianyou Zhai; Haimei Liu; Huiqiao Li; Xiaosheng Fang; Meiyong Liao; Liang Li; Haoshen Zhou; Yasuo Koide; Yoshio Bando; Dmitri Golberg
Adv. Mater. 2010, 22, 2547–2552 2010 WILEY-VCH Verlag G One-dimensional nanostructures have attracted considerable attention due to their importance in basic scientific research and potential technologic applications. Among them, vanadium pentoxide (V2O5) nanowires have been extensively studied in recent years because of their prospective applications in chemical sensors, field-emitters, catalysts, lithium-ion batteries, actuators, and electrochromic or other nanodevices. Several different approaches have been explored for the synthesis of V2O5 nanowires, such as thermal evaporation methods, hydrothermal/solvothermal syntheses, sol–gel techniques, and electrodeposition. However, the nanowires synthesized by these methods have typical lengths in the micrometer range (most of them are shorter than 10mm);moreover, if one canmake centimeter-long V2O5 nanowires, which should be much more useful compared to short wires for some specific purposes, such as field-emission (FE), device interconnects, and reinforcing fibers in composites. Herein, we fabricated high-quality single-crystalline centimeter-long V2O5 nanowires ( 80–120 nm in diameter, several centimeters in length; aspect ratio >10–10) using an environmental friendly hydrothermal approach without dangerous reagents, harmful solvents, and surfactants. The FE, electrochemical and electrical transport, and photoconductive properties of the synthesized V2O5 nanowires were then investigated in detail. Our results suggest a high potential of utilizing these novel nanowires in field-emitters, lithium-ion batteries, interconnects, and optoelectronic devices. The representative morphologies of the V2O5 nanowires were investigated by FE scanning electron microscopy (SEM), as shown in Figure 1a. Other SEM images (see the Supporting Information, Fig. S1) also confirm the high-yield fabrication of smooth and straight nanowires of 80–120 nm in diameter. Large portions of the nanowires are usually several millimeters or even up to several centimeters in length (inset of Fig. 1a), resulting in an aspect ratio of 10–10. To the best of our knowledge, this is the first time that such ultra-long V2O5 nanowires have been obtained. An X-ray diffraction (XRD) pattern of the sample is shown in Figure 1b. All the diffraction peaks can be indexed to an orthorhombic V2O5 phase with the lattice parameters of a1⁄4 11.54 A, b1⁄4 3.571 A, and c1⁄4 4.383 A, in good agreement with the literature values (Joint Committee on Powder Diffraction Standards (JCPDS) Card, no. 89-0612). No characteristic peaks of any impurities are detected in this pattern. Figure S2 (Supplementary Information) depicts a room temperature micro-Raman spectrum of the ultralong V2O5 nanowires. The peaks, located at 145, 197, 285, 305, 407, 480, 525, 694, and 990 cm , can be assigned to the Raman signature of V2O5. [18,19] A predominant low-wavelength peak at 145 cm 1 is attributed to the skeleton bent vibration (B3g mode), while the peaks at 197 and 285 cm 1 derive from the bending vibrations of OC V OB bond (Ag and B2g modes). The bending vibration of V OC (Ag mode), the bending vibration of V OB V bond (Ag mode), the stretching vibration of V OB V bond (Ag mode), and the stretching vibration of V OC bond (B2g mode) are regarded at about 305, 407, 525, and 694 cm , respectively. The layered structure of V2O5 is stacked up from distorted trigonal bipyramidal atoms that share edges to form (V2O4)n zigzag double chains along the [001] direction and are cross-linked along the [100] direction through the shared corners. The mode of a skeleton bent, corresponding to the peak at 145 cm , provides an evidence for the layered structure of V2O5. Furthermore, the narrow peak centered at 990 cm , corresponding to the stretching of vanadium atoms connected to oxygen atoms through double bonds (V1⁄4O), is also an additional clue to the layer-type structure of V2O5. [22,23] The detailed microstructures of V2O5 nanowires were further studied by transmission electron microscopy (TEM). Figure 2a shows a TEM image of V2O5 nanowires, which demonstrates that the V2O5 nanowires have uniform diameters throughout their entire lengths. An X-ray energy-dispersive spectrum (EDS) acquired from an individual nanowire exhibits strong V and O peaks. The atomic ratio of V and O is close to the 2:5
Sensors | 2013
Liwen Sang; Meiyong Liao; Masatomo Sumiya
Ultraviolet (UV) photodetectors have drawn extensive attention owing to their applications in industrial, environmental and even biological fields. Compared to UV-enhanced Si photodetectors, a new generation of wide bandgap semiconductors, such as (Al, In) GaN, diamond, and SiC, have the advantages of high responsivity, high thermal stability, robust radiation hardness and high response speed. On the other hand, one-dimensional (1D) nanostructure semiconductors with a wide bandgap, such as β-Ga2O3, GaN, ZnO, or other metal-oxide nanostructures, also show their potential for high-efficiency UV photodetection. In some cases such as flame detection, high-temperature thermally stable detectors with high performance are required. This article provides a comprehensive review on the state-of-the-art research activities in the UV photodetection field, including not only semiconductor thin films, but also 1D nanostructured materials, which are attracting more and more attention in the detection field. A special focus is given on the thermal stability of the developed devices, which is one of the key characteristics for the real applications.
ACS Nano | 2010
Tianyou Zhai; Xiaosheng Fang; Meiyong Liao; Xijin Xu; Liang Li; Baodan Liu; Yasuo Koide; Ying Ma; Jiannian Yao; Yoshio Bando; Dmitri Golberg
The synthesis of high-quality In2Se3 nanowire arrays via thermal evaporation method and the photoconductive characteristics of In2Se3 individual nanowires are first investigated. The electrical characterization of a single In2Se3 nanowire verifies an intrinsic n-type semiconductor behavior. These single-crystalline In2Se3 nanowires are then assembled in visible-light sensors which demonstrate a fast, reversible, and stable response. The high photosensitivity and quick photoresponse are attributed to the superior single-crystal quality and large surface-to-volume ratio resulting in fewer recombination barriers in nanostructures. These excellent performances clearly demonstrate the possibility of using In2Se3 nanowires in next-generation sensors and detectors for commercial, military, and space applications.
Advanced Materials | 2010
Liang Li; Pooi See Lee; Chaoyi Yan; Tianyou Zhai; Xiaosheng Fang; Meiyong Liao; Yasuo Koide; Yoshio Bando; Dmitri Golberg
[∗] Dr. L. Li , Dr. T. Y. Zhai , Dr. X. S. Fang , Prof. Y. Bando , Prof. D. Golberg International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1–1, Tsukuba, Ibaraki, 305–0044 (Japan) E-mail: [email protected]; [email protected]; [email protected] Prof. P. S. Lee , Dr. C. Y. Yan School of Materials Science and Engineering Nanyang Technological University (NTU) (Singapore) Dr. M. Y. Liao , Prof. Y. Koide Sensor Materials Center, NIMS Namiki 1–1, Tsukuba, Ibaraki, 305–0044 (Japan) E-mail: [email protected]
Advanced Materials | 2009
Xiaosheng Fang; Shenglin Xiong; Tianyou Zhai; Yoshio Bando; Meiyong Liao; Ujjal K. Gautam; Yasuo Koide; Xiaogang Zhang; Yitai Qian; Dmitri Golberg
Single-crystalline zinc selenide (ZnSe) nanobelts were fabricated via the ethylenediamine (en)-assisted ternary solution technique and subsequent thermal treatment. Individual ZnSe nanobelts were assembled into nanoscale devices, showing a high spectral selectivity and photocurrent/immediate-decay ratio and a fast time response, justifying effective utilization of the ZnSe nanobelts as blue/UV-light-sensitive photodetectors.
Advanced Materials | 2012
Xi Wang; Meiyong Liao; Yeteng Zhong; Jian Yao Zheng; Wei Tian; Tianyou Zhai; Chunyi Zhi; Ying Ma; Jiannian Yao; Yoshio Bando; Dmitri Golberg
Inspired by opening soft drink cans, a one-pot method to prepare ZnO hollow spheres with double-yolk egg (DEH) architectures is developed. The bubble-assisted Ostwald ripening is proposed for the formation of these novel structures. Uniqueness of DEHs morphology led to greatly enhanced photocatalytic activity and photodetector performance. The newly developed synthetic concept and the obtained novel morphologies should pave the way towards the design and fabrication of other similar materials with enhanced properties for microelectronics, optoelectronics, and other applications.
Advanced Materials | 2014
Wei Tian; Chao Zhang; Tianyou Zhai; Song-Lin Li; Xi Wang; Jiangwei Liu; Xiao Jie; Dequan Liu; Meiyong Liao; Yasuo Koide; Dmitri Golberg; Yoshio Bando
The application of nanofilm networks made of branched ZnS-ZnO nanostructures as a flexible UV photodetector is demonstrated. The fabricated devices show excellent operational characteristics: tunable spectral selectivity, widerange photoresponse, fast response speed, and excellent environmental stability.