Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Berghaus is active.

Publication


Featured researches published by Melanie Berghaus.


Chemical Communications | 2014

Productive encounter: molecularly imprinted nanoparticles prepared using magnetic templates

Melanie Berghaus; Reza Mohammadi; Börje Sellergren

Synthesis of core-shell nanoparticles by surface initiated reversible addition fragmentation chain transfer polymerization in presence of a chiral template conjugated to magnetic nanoparticles is reported. The approach leads to imprinted nanoparticles featuring enantioselectivity and enhanced affinity compared to nanoparticles prepared using free template.


Angewandte Chemie | 2014

Prebiotic Cell Membranes that Survive Extreme Environmental Pressure Conditions

Shobhna Kapoor; Melanie Berghaus; Saba Suladze; Daniel Prumbaum; Sebastian Grobelny; Patrick Degen; Stefan Raunser; Roland Winter

Attractive candidates for compartmentalizing prebiotic cells are membranes comprised of single-chain fatty acids. It is generally believed that life may have originated in the depth of the protoocean, that is, under high hydrostatic pressure conditions, but the structure and physical-chemical properties of prebiotic membranes under such conditions have not yet been explored. We report the temperature- and pressure-dependent properties of membranes composed of prebiotically highly-plausible lipids and demonstrate that prebiotic membranes could not only withstand extreme temperatures, but also serve as robust models of protocells operating in extreme pressure environments. We show that pressure not only increases the stability of vesicular systems but also limits their flexibility and permeability to solutes, while still keeping the membrane in an overall fluid-like and thus functional state.


ChemPhysChem | 2015

Exploring the Free Energy and Conformational Landscape of tRNA at High Temperature and Pressure

Caroline Schuabb; Melanie Berghaus; Christopher Rosin; Roland Winter

A combined temperature- and pressure-dependent study was employed to reveal the conformational and free-energy landscape of phenylalanine transfer RNA (tRNA(Phe) ), a known model for RNA function, to elucidate the features that are essential in determining its stability. These studies also help explore its structural properties under extreme environmental conditions, such as low/high temperatures and high pressures. To this end, fluorescence and FTIR spectroscopies, calorimetric and small-angle scattering measurements were carried out at different ion concentrations over a wide range of temperatures and pressures up to several hundred MPa. Compared with the pronounced temperature effect, the pressure-dependent structural changes of tRNA(Phe) are small. A maximum of only 15 % unpaired bases is observed upon pressurization up to 1 GPa. RNA unfolding differs not only from protein unfolding, but also from DNA melting. Its pressure stability seems to be similar to that of noncanonical DNA structures.


Angewandte Chemie | 2015

Condensation Agents Determine the Temperature-Pressure Stability of F-Actin Bundles

Mimi Gao; Melanie Berghaus; Julian von der Ecken; Stefan Raunser; Roland Winter

Biological cells provide a large variety of rodlike filaments, including filamentous actin (F-actin), which can form meshworks and bundles. One key question remaining in the characterization of such network structures revolves around the temperature and pressure stabilities of these architectures as a way to understand why cells actively use proteins for forming them. The packing properties of F-actin in fascin- and Mg(2+) -induced bundles are compared, and significantly different pressure-temperature stabilities are observed because of marked differences in their nature of interaction, solvation, and packing efficiency. Moreover, differences are observed in their morphologies and disintegration scenarios. The pressure-induced dissociation of the actin bundles is reminiscent of a single unbinding transition as observed in other soft elastic manifolds.


Journal of Physical Chemistry B | 2016

Near-Surface and Bulk Behavior of Bicontinuous Microemulsions under High-Pressure Conditions.

Melanie Berghaus; Michael Paulus; Paul Salmen; Samy Al-Ayoubi; Metin Tolan; Roland Winter

The effect of hydrostatic pressure on the structure of a bicontinuous microemulsion in the presence of a solid interface has been studied by X-ray reflectometry and compared to the bulk behavior determined by small-angle X-ray scattering. Surface-induced lamellar ordering is observed close to the hydrophilic interface, which persists upon compression. The lamellar domains are compressed, but the correlation length of lamellar order does not change with pressure. SAXS measurements on the bulk microemulsion revealed an increased order upon pressurization. Although pressure can cause the formation of highly ordered lamellar phases from ordered bicontinuous cubic phases, such a scenario is not observed for the disordered analogue studied here. High pressure increases the stiffness of the interfacial surfactant layer, but this is not sufficient to overcome the loss in conformational entropy that would result from a transition to an ordered lamellar phase. Possible technological and biological implications of our results are briefly discussed.


Journal of Molecular Biology | 2018

High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein

Yi Zhang; Melanie Berghaus; Sean Klein; Kelly Jenkins; Siwen Zhang; Scott A. McCallum; Joel E. Morgan; Roland Winter; Doug Barrick; Catherine A. Royer

Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine-rich repeat protein, pp32, by monitoring the pressure- and urea-induced unfolding of an N-terminal capping motif (N-cap) deletion mutant, pp32-∆N-cap, and a C-terminal capping motif destabilization mutant pp32-Y131F/D146L, using residue-specific NMR and small-angle X-ray scattering. Destabilization of the C-terminal capping motif resulted in higher cooperativity for the unfolding transition compared to wild-type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-cap led to strong deviation from two-state unfolding. In both urea- and pressure-induced unfolding, residues in repeats 1-3 of pp32-ΔN-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-ΔN-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-ΔN-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-ΔN-cap variant arise from their distinct mechanisms of action.


Biophysical Chemistry | 2017

Exploring the effects of temperature and pressure on the structure and stability of a small RNA hairpin

Caroline Schuabb; Salome Pataraia; Melanie Berghaus; Roland Winter

RNAs perform multiple vital roles within cells, including catalyzing biological reactions and expression of proteins. Small RNA hairpins (sRNAh) are the smallest functional entities of nucleic acids and are involved in various important biological functions such as ligand binding and tertiary folding initiation of proteins. We investigated the conformational and free energy landscape of the sRNAh gcUUCGgc over a wide range of temperatures and pressures using fluorescence resonance energy transfer, Fourier-transform infrared and UV/Vis spectroscopy as well as small-angle X-ray scattering on the unlabeled and/or fluorescently labeled sRNAh. The sRNAh shows a broad melting profile with continuous increase of unpaired conformations up to about 60°C. However, the sRNAh structure might not be fully unfolded at temperatures as high as 90°C and still comprise various partially unfolded compact conformations. Pressure up to 400MPa has a small effect on the base pairing and base stacking interactions of the sRNAh, indicating small conformational perturbations, only, which might originate from minor changes in packing and hydration of the RNA molecule upon compression. Pressurization at 70°C, i.e. at a temperature above the melting transition, has no significant effect on the conformational ensemble of the sRNAh, i.e., it does not promote formation of new native stem connections after thermal denaturation. Finally, we noticed that Cy3/Cy5 labeling of the sRNAh changes, probably via stacking interactions between the fluorescent dyes and the nucleotide rings, the stability of the sRNAh, thereby rendering FRET analysis of the conformational dynamics of such small RNA structure inappropriate.


Zeitschrift für Physikalische Chemie | 2018

The Effect of Natural Osmolyte Mixtures on the Temperature-Pressure Stability of the Protein RNase A

Loana Arns; Vitor Schuabb; Shari Meichsner; Melanie Berghaus; Roland Winter

Abstract In biological cells, osmolytes appear as complex mixtures with variable compositions, depending on the particular environmental conditions of the organism. Based on various spectroscopic, thermodynamic and small-angle scattering data, we explored the effect of two different natural osmolyte mixtures, which are found in shallow-water and deep-sea shrimps, on the temperature and pressure stability of a typical monomeric protein, RNase A. Both natural osmolyte mixtures stabilize the protein against thermal and pressure denaturation. This effect seems to be mainly caused by the major osmolyte components of the osmolyte mixtures, i.e. by glycine and trimethylamine-N-oxide (TMAO), respectively. A minor compaction of the structure, in particular in the unfolded state, seems to be largely due to TMAO. Differences in thermodynamic properties observed for glycine and TMAO, and hence also for the two osmolyte mixtures, are most likely due to different solvation properties and interactions with the protein. Different from TMAO, glycine seems to interact with the amino acid side chains and/or the backbone of the protein, thus competing with hydration water and leading to a less hydrated protein surface.


Scientific Reports | 2017

Temperature and pressure limits of guanosine monophosphate self-assemblies

Mimi Gao; Balasubramanian Harish; Melanie Berghaus; Rana Seymen; Loana Arns; Scott A. McCallum; Catherine A. Royer; Roland Winter

Guanosine monophosphate, among the nucleotides, has the unique property to self-associate and form nanoscale cylinders consisting of hydrogen-bonded G-quartet disks, which are stacked on top of one another. Such self-assemblies describe not only the basic structural motif of G-quadruplexes formed by, e.g., telomeric DNA sequences, but are also interesting targets for supramolecular chemistry and nanotechnology. The G-quartet stacks serve as an excellent model to understand the fundamentals of their molecular self-association and to unveil their application spectrum. However, the thermodynamic stability of such self-assemblies over an extended temperature and pressure range is largely unexplored. Here, we report a combined FTIR and NMR study on the temperature and pressure stability of G-quartet stacks formed by disodium guanosine 5′-monophosphate (Na25′-GMP). We found that under abyssal conditions, where temperatures as low as 5 °C and pressures up to 1 kbar are reached, the self-association of Na25′-GMP is most favoured. Beyond those conditions, the G-quartet stacks dissociate laterally into monomer stacks without significantly changing the longitudinal dimension. Among the tested alkali cations, K+ is the most efficient one to elevate the temperature as well as the pressure limits of GMP self-assembly.


Soft Matter | 2018

Combined effects of osmotic and hydrostatic pressure on multilamellar lipid membranes in the presence of PEG and trehalose

Samy Al-Ayoubi; Peter K. F. Schinkel; Melanie Berghaus; Marius Herzog; Roland Winter

We studied the interaction of lipid membranes with the disaccharide trehalose (TRH), which is known to stabilize biomembranes against various environmental stress factors. Generally, stress factors include low/high temperature, shear, osmotic and hydrostatic pressure. Small-angle X-ray-scattering was applied in combination with fluorescence spectroscopy and calorimetric measurements to get insights into the influence of trehalose on the supramolecular structure, hydration level, and elastic and thermodynamic properties as well as phase behavior of the model biomembrane DMPC, covering a large region of the temperature, osmotic and hydrostatic pressure phase space. We observed distinct effects of trehalose on the topology of the lipids supramolecular structure. Trehalose, unlike osmotic pressure induced by polyethylene glycol, leads to a decrease of lamellar order and a swelling of multilamellar vesicles, which is attributable to direct interactions between the membrane and trehalose. Our results revealed a distinct biphasic concentration dependence of the observed effects of trehalose. While trehalose intercalates between the polar head groups at low concentrations, the effects after saturation are dominated by the exclusion of trehalose from the membrane surface.

Collaboration


Dive into the Melanie Berghaus's collaboration.

Top Co-Authors

Avatar

Roland Winter

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Mimi Gao

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Caroline Schuabb

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Rosin

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Julius

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Loana Arns

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Metin Tolan

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Michael Paulus

Technical University of Dortmund

View shared research outputs
Researchain Logo
Decentralizing Knowledge