Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mélanie Boeckstaens is active.

Publication


Featured researches published by Mélanie Boeckstaens.


Molecular Microbiology | 2007

The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium.

Mélanie Boeckstaens; Bruno André; Anna Maria Marini

Three ammonium transport systems of the Mep/Amt/Rh superfamily contribute to ammonium uptake for use as a nitrogen source in Saccharomyces cerevisiae. A specific sensor role has further been proposed for Mep2 in the stimulation of pseudohyphal development during ammonium limitation. Optimal ammonium transport by the Mep proteins requires the Npr1 kinase, a potential target of the target‐of‐rapamycin signalling pathway. We show here that the growth impairment of cells lacking Npr1 on many nitrogen sources is shared by cells deprived of the three Mep proteins and is a consequence of deficient ammonium retrieval. Expression of a newly isolated Npr1‐independent and hyperactive Mep2 in cells lacking Npr1 and/or the Mep proteins restores growth on low ammonium but also on other nitrogen sources. This hyperactive Mep2 variant efficiently counteracts ammonium excretion. Hence, ammonium uptake activity plays an important role in compensating for leakage of catabolic ammonium. Our data also reveal that the requirement of Npr1 for ammonium‐induced pseudohyphal growth is an indirect consequence of its necessity for Mep2‐mediated ammonium transport. Finally, we show that Mep2 participates, through ammonium leakage compensation, in pseudohyphal growth induced by amino acid starvation. This argues further in favour of tight coupling of Mep2 transport and sensor functions.


Journal of Biological Chemistry | 2008

Distinct Transport Mechanisms in Yeast Ammonium Transport/Sensor Proteins of the Mep/Amt/Rh Family and Impact on Filamentation

Mélanie Boeckstaens; Bruno André; Anna Maria Marini

Ammonium transport proteins of the Mep/Amt/Rh family include microbial and plant Mep/Amt members, crucial for ammonium scavenging, and animal Rhesus factors likely involved in ammonium disposal. Recent structural information on two bacterial Mep/Amt proteins has revealed the presence, in the hydrophobic conducting pore, of a pair of preserved histidines proposed to play an important role in substrate conductance, by participating either in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} deprotonation or in shaping the pore. Here we highlight the existence of two functional Mep/Amt subfamilies distinguishable according to whether the first of these histidines is conserved, as in yeast ScMep2, or replaced by glutamate, as in ScMep1. Replacement of the native histidine of ScMep2 with glutamate leads to conversion from ScMep2 to ScMep1-like properties. This includes a two-unit upshift of the optimal pH for transport and an increase of the transport rate, consistent with alleviation of an energy-limiting step. Similar effects are observed when the same substitution is introduced into the Escherichia coli AmtB protein. In contrast to ScMep1, ScMep2 is proposed to play an additional signaling role in the induction of filamentous growth, a dimorphic change often associated with virulence in pathogenic fungi. We show here that the histidine to glutamate substitution in ScMep2 leads to uncoupling of the transport and sensor functions, suggesting that a ScMep2-specific transport mechanism might be responsible for filamentation. Our overall data suggest the existence of two functional groups of Mep/Amt-type proteins with different transport mechanisms and distinct impacts on cell physiology and signaling.


Current Genetics | 2006

Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters

Anna Maria Marini; Mélanie Boeckstaens; Fatine Benjelloun; Baya Cherif-Zahar; Bruno André

Ammonium transport proteins belonging to the Mep/Amt/Rh family are spread throughout all domains of life. A conserved aspartate residue plays a key role in the function of Escherichia coli AmtB. Here, we show that the analogous aspartate residue is critical for the transport function of eukaryotic family members as distant as the yeast transporter/sensor Mep2 and the human RhAG and RhCG proteins. In yeast Mep2, replacement of aspartate186 with asparagine produced an inactive transporter localized at the cell surface, whilst replacement with alanine was accompanied by stacking of the protein in the endoplasmic reticulum. Introduction of an acidic residue, glutamate, produced a partially active protein. A carboxyl group at position 186 of Mep2 therefore appears mandatory for function. Kinetic analysis shows the Mep2D186E variant to be particularly affected at the level of substrate affinity, suggesting an involvement of aspartate186 in ammonium recognition. Our data also put forward that ammonium recognition and/or transport by Mep2 is required for the sensor role played in the development of pseudohyphal growth. Finally, replacement of the conserved aspartate with asparagine in human RhAG and RhCG proteins resulted in the loss of bi-directional transport function. Hence, this aspartate residue might play a preserved functional role in Mep/Amt/Rh proteins.


Nature Communications | 2014

The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein

Mélanie Boeckstaens; Elisa Llinares; Pascale Van Vooren; Anna Maria Marini

The TORC1 complex controls cell growth upon integrating nutritional signals including amino-acid availability. TORC1 notably adapts the plasma membrane protein content by regulating arrestin-mediated endocytosis of amino-acid transporters. Here we demonstrate that TORC1 further fine tunes the inherent activity of the ammonium transport protein, Mep2, a yeast homologue of mammalian Rhesus factors, independently of arrestin-mediated endocytosis. The TORC1 effector kinase Npr1 and the upstream TORC1 regulator Npr2 control Mep2 transport activity by phospho-silencing a carboxy-terminal autoinhibitory domain. Under poor nitrogen supply, Npr1 enables Mep2 S457 phosphorylation and thus ammonium transport activity. Supplementation of the preferred nitrogen source glutamine leads to Mep2 inactivation and instant S457 dephosphorylation via plasma membrane Psr1 and Psr2 redundant phosphatases. This study underscores that TORC1 also adjusts nutrient permeability to regulate cell growth in a fast and flexible response to environmental perturbation, establishing a hierarchy in the transporters to be degraded, inactivated or maintained active at the plasma membrane.


Journal of Biological Chemistry | 2006

Transduction of the nitrogen signal activating Gln3-mediated transcription is independent of Npr1 kinase and Rsp5-Bul1/2 ubiquitin ligase in Saccharomyces cerevisiae.

André Feller; Mélanie Boeckstaens; Anna Maria Marini; Evelyne Dubois

Nitrogen Catabolite Repression (NCR) allows the adaptation of yeast cells to the quality of nitrogen supply by inhibiting the transcription of genes encoding proteins involved in transport and degradation of nonpreferred nitrogen sources. In cells using ammonium or glutamine, the GATA transcription factor Gln3 is sequestered in the cytoplasm by Ure2 whereas it enters the nucleus after a shift to a nonpreferred nitrogen source like proline or upon addition of rapamycin, the TOR complex inhibitor. Recently, the Npr1 kinase and the Rsp5, Bul1/2 ubiquitin ligase complex were reported to have antagonistic roles in the nuclear import and Gln3-mediated activation. The Npr1 kinase controls the activity of various permeases including transporters for nitrogen sources that stimulate NCR such as the Mep ammonium transport systems. Combining data from growth tests, Northern blot analysis and Gln3 immunolocalization, we show that the Npr1 kinase is not a direct negative regulator of Gln3-dependent transcription. The derepression of Gln3-activated genes in ammonium-grown npr1 cells results from the reduced uptake of the nitrogen-repressing compound because NCR could be restored in npr1 cells by repairing ammonium-uptake defects through different means. Finally, we show that the impairment of the ubiquitin ligase complex does not prevent induction of NCR genes under nonpreferred nitrogen conditions. The apparent Rsp5-, Bul1/2-dependent Gln3 activation keeps to the cellular status, as it is only observed in cells having left the balanced phase of exponential growth.


The Journal of Experimental Biology | 2015

Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1

Aida Adlimoghaddam; Mélanie Boeckstaens; Anna Maria Marini; Jason R. Treberg; Ann-Karen Ak Brassinga; Dirk Weihrauch

ABSTRACT The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW−1 day−1) and very little urea (0.21±0.004 µmol gFW−1 day−1). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H+-ATPase (subunit A) and Na+/K+-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H+-ATPase, carbonic anhydrase, Na+/K+-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l−1 NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na+/K+-ATPase also increased significantly in response to 1 mmol l−1 NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins. Highlighted Article: Hypodermal ammonia excretion in the soil nematode C. elegans involves Na+/K+-ATPase, V-ATPase, carbonic anhydrase, the microtuble network and a functional Rh protein.


Molecular Microbiology | 2016

Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs.

Mohammad Fayyad-Kazan; André Feller; E. Bodo; Mélanie Boeckstaens; Anna Maria Marini; Evelyne Dubois; Isabelle Georis

Nitrogen catabolite repression (NCR) is a wide transcriptional regulation program enabling bakers yeast to downregulate genes involved in the utilization of poor nitrogen sources when preferred ones are available. Nowadays, glutamine and glutamate, the major nitrogen donors for biosyntheses, are assumed to be key metabolic signals regulating NCR. NCR is controlled by the conserved TORC1 complex, which integrates nitrogen signals among others to regulate cell growth. However, accumulating evidence indicate that the TORC1‐mediated control of NCR is only partial, arguing for the existence of supplementary regulatory processes to be discovered. In this work, we developed a genetic screen to search for new players involved in NCR signaling. Our data reveal that the NADP‐glutamate dehydrogenase activity of Gdh1 negatively regulates NCR‐sensitive gene transcription. By determining the total, cytoplasmic and vacuolar pools of amino acids, we show that there is no positive correlation between glutamine/glutamate reservoirs and the extent of NCR. While our data indicate that glutamine could serve as initial trigger of NCR, they show that it is not a sufficient signal to sustain repression and point to the existence of yet unknown signals. Providing additional evidence uncoupling TORC1 activity and NCR, our work revisits the dogmas underlying NCR regulation.


PLOS ONE | 2015

The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner.

Andreas Pfannmüller; Dominik Wagner; Christian M. K. Sieber; Birgit Schönig; Mélanie Boeckstaens; Anna Maria Marini; Bettina Tudzynski

The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to yeast.


PLOS ONE | 2013

SNPs Altering Ammonium Transport Activity of Human Rhesus Factors Characterized by a Yeast-Based Functional Assay

Aude Deschuyteneer; Mélanie Boeckstaens; Christelle De Mees; Pascale Van Vooren; René Wintjens; Anna Maria Marini

Proteins of the conserved Mep-Amt-Rh family, including mammalian Rhesus factors, mediate transmembrane ammonium transport. Ammonium is an important nitrogen source for the biosynthesis of amino acids but is also a metabolic waste product. Its disposal in urine plays a critical role in the regulation of the acid/base homeostasis, especially with an acid diet, a trait of Western countries. Ammonium accumulation above a certain concentration is however pathologic, the cytotoxicity causing fatal cerebral paralysis in acute cases. Alteration in ammonium transport via human Rh proteins could have clinical outcomes. We used a yeast-based expression assay to characterize human Rh variants resulting from non synonymous single nucleotide polymorphisms (nsSNPs) with known or unknown clinical phenotypes and assessed their ammonium transport efficiency, protein level, localization and potential trans-dominant impact. The HsRhAG variants (I61R, F65S) associated to overhydrated hereditary stomatocytosis (OHSt), a disease affecting erythrocytes, proved affected in intrinsic bidirectional ammonium transport. Moreover, this study reveals that the R202C variant of HsRhCG, the orthologue of mouse MmRhcg required for optimal urinary ammonium excretion and blood pH control, shows an impaired inherent ammonium transport activity. Urinary ammonium excretion was RHcg gene-dose dependent in mouse, highlighting MmRhcg as a limiting factor. HsRhCGR202C may confer susceptibility to disorders leading to metabolic acidosis for instance. Finally, the analogous R211C mutation in the yeast ScMep2 homologue also impaired intrinsic activity consistent with a conserved functional role of the preserved arginine residue. The yeast expression assay used here constitutes an inexpensive, fast and easy tool to screen nsSNPs reported by high throughput sequencing or individual cases for functional alterations in Rh factors revealing potential causal variants.


Science Advances | 2018

Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily

Idoia Ariz; Mélanie Boeckstaens; Catarina Gouveia; Ana Paula Martins; Emanuel Sanz-Luque; Emilio Fernández; Graça Soveral; Nicolaus von Wirén; Anna Maria Marini; Pedro Pm Aparicio-Tejo; Cristina Cruz

Natural nitrogen isotopic signature reveals deprotonation during ammonium transport across living organisms. Ammonium is an important nitrogen (N) source for living organisms, a key metabolite for pH control, and a potent cytotoxic compound. Ammonium is transported by the widespread AMT-Mep-Rh membrane proteins, and despite their significance in physiological processes, the nature of substrate translocation (NH3/NH4+) by the distinct members of this family is still a matter of controversy. Using Saccharomyces cerevisiae cells expressing representative AMT-Mep-Rh ammonium carriers and taking advantage of the natural chemical-physical property of the N isotopic signature linked to NH4+/NH3 conversion, this study shows that only cells expressing AMT-Mep-Rh proteins were depleted in 15N relative to 14N when compared to the external ammonium source. We observed 15N depletion over a wide range of external pH, indicating its independence of NH3 formation in solution. On the basis of inhibitor studies, ammonium transport by nonspecific cation channels did not show isotope fractionation but competition with K+. We propose that kinetic N isotope fractionation is a common feature of AMT-Mep-Rh–type proteins, which favor 14N over 15N, owing to the dissociation of NH4+ into NH3 + H+ in the protein, leading to 15N depletion in the cell and allowing NH3 passage or NH3/H+ cotransport. This deprotonation mechanism explains these proteins’ essential functions in environments under a low NH4+/K+ ratio, allowing organisms to specifically scavenge NH4+. We show that 15N isotope fractionation may be used in vivo not only to determine the molecular species being transported by ammonium transport proteins, but also to track ammonium toxicity and associated amino acids excretion.

Collaboration


Dive into the Mélanie Boeckstaens's collaboration.

Top Co-Authors

Avatar

Anna Maria Marini

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Bruno André

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

André Feller

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Evelyne Dubois

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Pascale Van Vooren

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Elisa Llinares

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

René Wintjens

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge