Melanie Georgiou
Open University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melanie Georgiou.
Biomaterials | 2013
Melanie Georgiou; Stephen C.J. Bunting; Heather A. Davies; Alison J. Loughlin; Jonathan P. Golding; James B. Phillips
A new combination of tissue engineering techniques provides a simple and effective method for building aligned cellular biomaterials. Self-alignment of Schwann cells within a tethered type-1 collagen matrix, followed by removal of interstitial fluid produces a stable tissue-like biomaterial that recreates the aligned cellular and extracellular matrix architecture associated with nerve grafts. Sheets of this engineered neural tissue supported and directed neuronal growth in a co-culture model, and initial in vivo tests showed that a device containing rods of rolled-up sheets could support neuronal growth during rat sciatic nerve repair (5 mm gap). Further testing of this device for repair of a critical-sized 15 mm gap showed that, at 8 weeks, engineered neural tissue had supported robust neuronal regeneration across the gap. This is, therefore, a useful new approach for generating anisotropic engineered tissues, and it can be used with Schwann cells to fabricate artificial neural tissue for peripheral nerve repair.
The FASEB Journal | 2014
Wendy Martens; Kathleen Sanen; Melanie Georgiou; Tom Struys; Annelies Bronckaers; Marcel Ameloot; James B. Phillips; Ivo Lambrichts
In the present study, we evaluated the differentiation potential of human dental pulp stem cells (hDPSCs) toward Schwann cells, together with their functional capacity with regard to myelination and support of neurite outgrowth in vitro. Successful Schwann cell differentiation was confirmed at the morphological and ultrastructural level by transmission electron microscopy. Furthermore, compared to undifferentiated hDPSCs, immunocytochemistry and ELISA tests revealed increased glial marker expression and neurotrophic factor secretion of differentiated hDPSCs (d‐hDPSCs), which promoted survival and neurite outgrowth in 2‐dimensional dorsal root ganglia cultures. In addition, neurites were myelinated by d‐hDPSCs in a 3‐dimensional collagen type I hydrogel neural tissue construct. This engineered construct contained aligned columns of d‐hDPSCs that supported and guided neurite outgrowth. Taken together, these findings provide the first evidence that hDPSCs are able to undergo Schwann cell differentiation and support neural outgrowth in vitro, proposing them to be good candidates for cell‐based therapies as treatment for peripheral nerve injury.—Martens, W., Sanen, K., Georgiou, M., Struys, T., Bronckaers, A., Ameloot, M., Phillips, J., Lambrichts, I. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue‐engineered collagen construct in vitro. FASEB J. 28, 1634–1643 (2014). www.fasebj.org
Biomaterials | 2015
Melanie Georgiou; Jon P. Golding; Alison J. Loughlin; Paul J. Kingham; James B. Phillips
Adipose-derived stem cells were isolated from rats and differentiated to a Schwann cell-like phenotype in vitro. The differentiated cells (dADSCs) underwent self-alignment in a tethered type-1 collagen gel, followed by stabilisation to generate engineered neural tissue (EngNT-dADSC). The pro-regenerative phenotype of dADSCs was enhanced by this process, and the columns of aligned dADSCs in the aligned collagen matrix supported and guided neurite extension in vitro. EngNT-dADSC sheets were rolled to form peripheral nerve repair constructs that were implanted within NeuraWrap conduits to bridge a 15 mm gap in rat sciatic nerve. After 8 weeks regeneration was assessed using immunofluorescence imaging and transmission electron microscopy and compared to empty conduit and nerve graft controls. The proportion of axons detected in the distal stump was 3.5 fold greater in constructs containing EngNT-dADSC than empty tube controls. Our novel combination of technologies that can organise autologous therapeutic cells within an artificial tissue construct provides a promising new cellular biomaterial for peripheral nerve repair.
Journal of Tissue Engineering and Regenerative Medicine | 2017
Kathleen Sanen; Wendy Martens; Melanie Georgiou; Marcel Ameloot; Ivo Lambrichts; James B. Phillips
Despite the spontaneous regenerative capacity of the peripheral nervous system, large gap peripheral nerve injuries (PNIs) require bridging strategies. The limitations and suboptimal results obtained with autografts or hollow nerve conduits in the clinic urge the need for alternative treatments. Recently, we have described promising neuroregenerative capacities of Schwann cells derived from differentiated human dental pulp stem cells (d‐hDPSCs) in vitro. Here, we extended the in vitro assays to show the pro‐angiogenic effects of d‐hDPSCs, such as enhanced endothelial cell proliferation, migration and differentiation. In addition, for the first time we evaluated the performance of d‐hDPSCs in an in vivo rat model of PNI. Eight weeks after transplantation of NeuraWrap™ conduits filled with engineered neural tissue (EngNT) containing aligned d‐hDPSCs in 15‐mm rat sciatic nerve defects, immunohistochemistry and ultrastructural analysis revealed ingrowing neurites, myelinated nerve fibres and blood vessels along the construct. Although further research is required to optimize the delivery of this EngNT, our findings suggest that d‐hDPSCs are able to exert a positive effect in the regeneration of nerve tissue in vivo. Copyright
Regenerative Medicine | 2013
Emma East; Noémie Johns; Melanie Georgiou; Jon P. Golding; A Jane Loughlin; Paul J. Kingham; James B. Phillips
AIM This study aimed to develop a 3D culture model to test the extent to which transplanted stem cells modulate astrocyte reactivity, where exacerbated glial cell activation could be detrimental to CNS repair success. MATERIALS & METHODS The reactivity of rat astrocytes to bone marrow mesenchymal stem cells, neural crest stem cells (NCSCs) and differentiated adipose-derived stem cells was assessed after 5 days. Schwann cells were used as a positive control. RESULTS NCSCs and differentiated Schwann cell-like adipose-derived stem cells did not increase astrocyte reactivity. Highly reactive responses to bone marrow mesenchymal stem cells and Schwann cells were equivalent. CONCLUSION This approach can screen therapeutic cells prior to in vivo testing, allowing cells likely to trigger a substantial astrocyte response to be identified at an early stage. NCSCs and differentiated Schwann cell-like adipose-derived stem cells may be useful in treating CNS damage without increasing astrogliosis.
Scientific Reports | 2018
Melanie Georgiou; Joana Neves dos Reis; Rachael Wood; Patricia Perez Esteban; Victoria Roberton; Chris Mason; Daqing Li; Ying Li; David Choi; Ivan Wall
Olfactory ensheathing cells (OECs) are a promising potential cell therapy to aid regeneration. However, there are significant challenges in isolating and characterizing them. In the current study, we have explored methods to enhance the recovery of cells expressing OEC marker p75NTR from rat mucosa. With the addition of a 24-hour differential adhesion step, the expression of p75NTR was significantly increased to 73 ± 5% and 46 ± 18% on PDL and laminin matrices respectively. Additionally, the introduction of neurotrophic factor NT-3 and the decrease in serum concentration to 2% FBS resulted in enrichment of OECs, with p75NTR at nearly 100% (100 ± 0% and 98 ± 2% on PDL and laminin respectively), and candidate fibroblast marker Thy1.1 decreased to zero. Culturing OECs at physiologically relevant oxygen tension (2–8%) had a negative impact on p75NTR expression and overall cell survival. Regarding cell potency, co-culture of OECs with NG108-15 neurons resulted in more neuronal growth and potential migration at atmospheric oxygen. Moreover, OECs behaved similarly to a Schwann cell line positive control. In conclusion, this work identified key bioprocessing fundamentals that will underpin future development of OEC-based cell therapies for potential use in spinal cord injury repair. However, there is still much work to do to create optimized isolation methods.
Archive | 2016
James B. Phillips; Melanie Georgiou
Archive | 2013
Kathleen Sanen; Wendy Martens; Melanie Georgiou; James B. Phillips; Ivo Lambrichts; Marcel Ameloot
Archive | 2017
Rachael Wood; Melanie Georgiou; Ivan Wall
Archive | 2013
Melanie Georgiou; Jon P. Golding; Jane Loughlin; James B. Phillips