Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Ghoul is active.

Publication


Featured researches published by Melanie Ghoul.


Evolution | 2014

Toward an evolutionary definition of cheating.

Melanie Ghoul; Ashleigh S. Griffin; Stuart A. West

The term “cheating” is used in the evolutionary and ecological literature to describe a wide range of exploitative or deceitful traits. Although many find this a useful short hand, others have suggested that it implies cognitive intent in a misleading way, and is used inconsistently. We provide a formal justification of the use of the term “cheat” from the perspective of an individual as a maximizing agent. We provide a definition for cheating that can be applied widely, and show that cheats can be broadly classified on the basis of four distinctions: (i) whether cooperation is an option; (ii) whether deception is involved; (iii) whether members of the same or different species are cheated; and (iv) whether the cheat is facultative or obligate. Our formal definition and classification provide a framework that allow us to resolve and clarify a number of issues, regarding the detection and evolutionary consequences of cheating, as well as illuminating common principles and similarities in the underlying selection pressures.


Trends in Microbiology | 2016

The Ecology and Evolution of Microbial Competition

Melanie Ghoul; Sara Mitri

Microbes are typically surrounded by different strains and species with whom they compete for scarce nutrients and limited space. Given such challenging living conditions, microbes have evolved many phenotypes with which they can outcompete and displace their neighbours: secretions to harvest resources, loss of costly genes whose products can be obtained from others, stabbing and poisoning neighbouring cells, or colonising spaces while preventing others from doing so. These competitive phenotypes appear to be common, although evidence suggests that, over time, competition dies down locally, often leading to stable coexistence of genetically distinct lineages. Nevertheless, the selective forces acting on competition and the resulting evolutionary fates of the different players depend on ecological conditions in a way that is not yet well understood. Here, we highlight open questions and theoretical predictions of the long-term dynamics of competition that remain to be tested. Establishing a clearer understanding of microbial competition will allow us to better predict the behaviour of microbes, and to control and manipulate microbial communities for industrial, environmental, and medical purposes.


PLOS ONE | 2014

Loss of Social Behaviours in Populations of Pseudomonas aeruginosa Infecting Lungs of Patients with Cystic Fibrosis

Natalie Jiricny; Søren Molin; Kevin R. Foster; Stephen P. Diggle; Pauline D. Scanlan; Melanie Ghoul; Helle Krogh Johansen; Lorenzo A. Santorelli; Roman Popat; Stuart A. West; Ashleigh S. Griffin

Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections.


Journal of Evolutionary Biology | 2014

An experimental test of whether cheating is context dependent

Melanie Ghoul; Stuart A. West; Stephen P. Diggle; Ashleigh S. Griffin

Microbial cells rely on cooperative behaviours that can breakdown as a result of exploitation by cheats. Recent work on cheating in microbes, however, has produced examples of populations benefiting from the presence of cheats and/or cooperative behaviours being maintained despite the presence of cheats. These observations have been presented as evidence for selection favouring cheating at the population level. This apparent contradiction arises when cheating is defined simply by the reduced expression of a cooperative trait and not in terms of the social costs and benefits of the trait under investigation. Here, we use two social traits, quorum sensing and iron‐scavenging siderophore production in Pseudomonas aeruginosa, to illustrate the importance of defining cheating by the social costs and benefits. We show that whether a strain is a cheat depends on the costs and benefits associated with the social and abiotic environment and not the absolute expression of a cooperative trait.


PLOS ONE | 2013

Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies

Ville-Petri Friman; Melanie Ghoul; Søren Molin; Helle Krogh Johansen; Angus Buckling

Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1–25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2–23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations.


Proceedings of the Royal Society B: Biological Sciences | 2015

Bacteriocin-mediated competition in cystic fibrosis lung infections

Melanie Ghoul; Stuart A. West; Helle Krogh Johansen; Søren Molin; Odile B. Harrison; Martin C. J. Maiden; Lars Jelsbak; John B. Bruce; Ashleigh S. Griffin

Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations, especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that (i) isolates from later infection stages inhibited earlier infecting strains less, but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage over time; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections.


Journal of Evolutionary Biology | 2016

Pyoverdin cheats fail to invade bacterial populations in stationary phase

Melanie Ghoul; Stuart A. West; Fergus A. Mccorkell; Zhuo‐Bin Lee; John B. Bruce; Ashleigh S. Griffin

Microbes engage in cooperative behaviours by producing and secreting public goods, the benefits of which are shared among cells, and are therefore susceptible to exploitation by nonproducing cheats. In nature, bacteria are not typically colonizing sterile, rich environments in contrast to laboratory experiments, which involve inoculating sterile culture with few bacterial cells that then race to fill the available niche. Here, we study the potential implications of this difference, using the production of pyoverdin, an iron‐scavenging siderophore that acts as a public good in the bacteria Pseudomonas aeruginosa. We show that (1) nonproducers are able to invade cultures of producers when added at the start of growth or during early exponential growth phase, but not during late exponential or stationary phase; (2) the producer strain does not produce pyoverdin in the late exponential and stationary phases and so is not paying the cost of cooperating during those phases. These results suggest that whether a nonproducing mutant can invade will depend upon when the mutation arises, as well as the population structure, and raise a potential difficulty with the use of antimicrobial treatment strategies that propose to exploit the invasive abilities of cheats.


Frontiers in Microbiology | 2017

Diversity, Prevalence, and Longitudinal Occurrence of Type II Toxin-Antitoxin Systems of Pseudomonas aeruginosa Infecting Cystic Fibrosis Lungs.

Sandra Breum Andersen; Melanie Ghoul; Ashleigh S. Griffin; Bent Petersen; Helle Krogh Johansen; Søren Molin

Type II toxin-antitoxin (TA) systems are most commonly composed of two genes encoding a stable toxin, which harms the cell, and an unstable antitoxin that can inactivate it. TA systems were initially characterized as selfish elements, but have recently gained attention for regulating general stress responses responsible for pathogen virulence, formation of drug-tolerant persister cells and biofilms—all implicated in causing recalcitrant chronic infections. We use a bioinformatics approach to explore the distribution and evolution of type II TA loci of the opportunistic pathogen, Pseudomonas aeruginosa, across longitudinally sampled isolates from cystic fibrosis lungs. We identify their location in the genome, mutations, and gain/loss during infection to elucidate their function(s) in stabilizing selfish elements and pathogenesis. We found (1) 26 distinct TA systems, where all isolates harbor four in their core genome and a variable number of the remaining 22 on genomic islands; (2) limited mutations in core genome TA loci, suggesting they are not under negative selection; (3) no evidence for horizontal transmission of elements with TA systems between clone types within patients, despite their ability to mobilize; (4) no gain and limited loss of TA-bearing genomic islands, and of those elements partially lost, the remnant regions carry the TA systems supporting their role in genomic stabilization; (5) no significant correlation between frequency of TA systems and strain ability to establish as chronic infection, but those with a particular TA, are more successful in establishing a chronic infection.


Trends in Genetics | 2017

Sociomics: Using Omic Approaches to Understand Social Evolution

Melanie Ghoul; Sandra Breum Andersen; Stuart A. West

All of life is social, from genes cooperating to form organisms, to animals cooperating to form societies. Omic approaches offer exceptional opportunities to solve major outstanding problems in the study of how sociality evolves. First, omics can be used to clarify the extent and form of sociality in natural populations. This is especially useful in species where it is difficult to study social traits in natural populations, such as bacteria and other microbes. Second, omics can be used to examine the consequences of sociality for genome evolution and gene expression. This is especially useful in cases where there is clear variation in the level of sociality, such as the social insects. Major tasks for the future are to apply these approaches to a wider range of non-model organisms, and to move from exploratory analyses to the testing of evolutionary theory.


bioRxiv | 2018

Privatisation rescues function following loss of cooperation

Sandra Breum Andersen; Melanie Ghoul; Rasmus Lykke Marvig; Zhou-Bin Lee; Søren Molin; Helle Krogh Johansen; Ashleigh S. Griffin

A single cheating mutant can lead to the invasion and eventual eradication of cooperation from a population. Consequently, cheat invasion is often considered as “game over” in empirical and theoretical studies of cooperator-cheat dynamics, especially when cooperation is necessary for fulfilling an essential function. But is cheat invasion necessarily “game over” in nature? By following a population of bacteria through loss of cooperation and beyond, we observed that individuals evolved to replace cooperation with a selfish, or “private” behaviour. Specifically, we show that when cheating caused the loss of cooperative iron acquisition in a collection of Pseudomonas aeruginosa isolates from cystic fibrosis patients, a private uptake system that only benefits the focal individual was upregulated. This observation highlights the importance of social dynamics of natural populations and emphasizes the potential impact of past social interaction on the evolution of private traits.

Collaboration


Dive into the Melanie Ghoul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Molin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge