Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Grimm is active.

Publication


Featured researches published by Melanie Grimm.


Nature Medicine | 2010

Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R

Konrad Wilhelm; Jayanthi Ganesan; Tobias Müller; Christoph Dürr; Melanie Grimm; Andreas Beilhack; Christine D. Krempl; Stephan Sorichter; Ulrike V. Gerlach; Eva Jüttner; Alf Zerweck; Frank Gärtner; Patrizia Pellegatti; Francesco Di Virgilio; Davide Ferrari; Neeraja Kambham; Paul Fisch; Jürgen Finke; Marco Idzko; Robert Zeiser

Danger signals released upon cell damage can cause excessive immune-mediated tissue destruction such as that found in acute graft-versus-host disease (GVHD), allograft rejection and systemic inflammatory response syndrome. Given that ATP is found in small concentrations in the extracellular space under physiological conditions, and its receptor P2X7R is expressed on several immune cell types, ATP could function as a danger signal when released from dying cells. We observed increased ATP concentrations in the peritoneal fluid after total body irradiation, and during the development of GVHD in mice and in humans. Stimulation of antigen-presenting cells (APCs) with ATP led to increased expression of CD80 and CD86 in vitro and in vivo and actuated a cascade of proinflammatory events, including signal transducer and activator of transcription-1 (STAT1) phosphorylation, interferon-γ (IFN-γ) production and donor T cell expansion, whereas regulatory T cell numbers were reduced. P2X7R expression increased when GVHD evolved, rendering APCs more responsive to the detrimental effects of ATP, thereby providing positive feedback signals. ATP neutralization, early P2X7R blockade or genetic deficiency of P2X7R during GVHD development improved survival without immune paralysis. These data have major implications for transplantation medicine, as pharmacological interference with danger signals that act via P2X7R could lead to the development of tolerance without the need for intensive immunosuppression.


American Journal of Respiratory and Critical Care Medicine | 2010

Extracellular Adenosine Triphosphate and Chronic Obstructive Pulmonary Disease

Marek Lommatzsch; Sanja Cicko; Tobias Müller; Monica Lucattelli; Kai Bratke; Paul Stoll; Melanie Grimm; Thorsten Dürk; Gernot Zissel; Davide Ferrari; Francesco Di Virgilio; Stephan Sorichter; Giuseppe Lungarella; J. Christian Virchow; Marco Idzko

RATIONALE Extracellular ATP promotes inflammation, but its role in chronic obstructive pulmonary disease (COPD) is unknown. OBJECTIVES To analyze the expression of ATP and its functional consequences in never-smokers, asymptomatic smokers, and patients with COPD. METHODS ATP was quantified in bronchoalveolar lavage fluid (BALF) of never-smokers, asymptomatic smokers, and patients with COPD of different severity. The expression of specific ATP (purinergic) receptors was measured in airway macrophages and blood neutrophils from control subjects and patients with COPD. The release of mediators by macrophages and neutrophils and neutrophil chemotaxis was assessed after ATP stimulation. MEASUREMENTS AND MAIN RESULTS Chronic smokers had elevated ATP concentrations in BALF compared with never-smokers. Acute smoke exposure led to a further increase in endobronchial ATP concentrations. Highest ATP concentrations in BALF were present in smokers and ex-smokers with COPD. In patients with COPD, BALF ATP concentrations correlated negatively with lung function and positively with BALF neutrophil counts. ATP induced a stronger chemotaxis and a stronger elastase release in blood neutrophils from patients with COPD, as compared with control subjects. In addition, airway macrophages from patients with COPD responded with an increased secretion of proinflammatory and tissue-degrading mediators after ATP stimulation. These findings were accompanied by an up-regulation of specific purinergic receptors in blood neutrophils and airway macrophages of patients with COPD. CONCLUSIONS COPD is characterized by a strong and persistent up-regulation of extracellular ATP in the airways. Extracellular ATP appears to contribute to the pathogenesis of COPD by promoting inflammation and tissue degradation.


American Journal of Respiratory Cell and Molecular Biology | 2011

A Potential Role for P2X7R in Allergic Airway Inflammation in Mice and Humans

Tobias Müller; Rodolfo de Paula Vieira; Melanie Grimm; Thorsten Dürk; Sanja Cicko; Robert Zeiser; Thilo Jakob; Stefan F. Martin; Britta Blumenthal; Stephan Sorichter; Davide Ferrari; Francesco Di Virgillio; Marco Idzko

P2X₇R deficiency is associated with a less severe outcome in acute and chronic inflammatory disorders. Recently, we demonstrated that extracellular adenosine triphosphate is involved in the pathogenesis of asthma by modulating the function of dendritic cells (DCs). However, the role of the purinergic receptor subtype P2X₇ is unknown. To elucidate the role of P2X₇R in allergic airway inflammation (AAI) in vitro and in vivo, P2X₇R expression was measured in lung tissue and immune cells of mice or in humans with allergic asthma. By using a specific P2X₇R-antagonist and P2X₇R-deficient animals, the role of this receptor in acute and chronic experimental asthma was explored. P2X₇R was found to be up-regulated during acute and chronic asthmatic airway inflammation in mice and humans. In vivo experiments revealed the functional relevance of this finding because selective P2X₇R inhibition or P2X₇R deficiency was associated with reduced features of acute and chronic asthma in the ovalbumin-alum or HDM model of AAI. Experiments with bone marrow chimeras emphasized that P2X₇R expression on hematopoietic cells is responsible for the proasthmatic effects of P2X₇R signaling. In the DC-driven model of AAI, P2X₇R-deficient DCs showed a reduced capacity to induce Th2 immunity in vivo. Up-regulation of P2X₇R on BAL macrophages and blood eosinophils could be observed in patients with chronic asthma. Our data suggest that targeting P2X₇R on hematopoietic cells (e.g., DCs or eosinophils) might be a new therapeutic option for the treatment of asthma.


PLOS ONE | 2009

5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo.

Tobias Müller; Thorsten Dürk; Britta Blumenthal; Melanie Grimm; Sanja Cicko; Elisabeth Panther; Stephan Sorichter; Yared Herouy; Francesco Di Virgilio; Davide Ferrari; Johannes Norgauer; Marco Idzko

Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR1 and 5-HTR2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR3, 5-HTR4 and 5-HTR7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders.


American Journal of Respiratory and Critical Care Medicine | 2013

Production of Serotonin by Tryptophan Hydroxylase 1 and Release via Platelets Contribute to Allergic Airway Inflammation

Thorsten Dürk; Daniel Duerschmied; Tobias Müller; Melanie Grimm; Sebastian Reuter; Rodolfo de Paula Vieira; Korcan Ayata; Sanja Cicko; Stephan Sorichter; Diego J. Walther; J. Christian Virchow; Christian Taube; Marco Idzko

RATIONALE 5-Hydroxytryptamine (5-HT) is involved in the pathogenesis of allergic airway inflammation (AAI). It is unclear, however, how 5-HT contributes to AAI and whether this depends on tryptophan hydroxylase (TPH) 1, the critical enzyme for peripheral 5-HT synthesis. OBJECTIVES To elucidate the role of TPH1 and the peripheral source of 5-HT in asthma pathogenesis. METHODS TPH1-deficient and TPH1-inhibitor-treated animals were challenged in ovalbumin and house dust mite models of AAI. Experiments with bone marrow chimera, mast cell-deficient animals, platelets transfusion, and bone marrow dendritic cells (BMDC) driven model of AAI were performed. 5-HT levels were measured in bronchoalveolar lavage fluid or serum of animals with AAI and in human asthma. MEASUREMENTS AND MAIN RESULTS 5-HT levels are increased in bronchoalveolar lavage fluid of mice and people with asthma after allergen provocation. TPH1 deficiency and TPH1 inhibition reduced all cardinal features of AAI. Administration of exogenous 5-HT restored AAI in TPH1-deficient mice. The pivotal role of 5-HT production by structural cells was corroborated by bone marrow chimera experiments. Experiments in mast cell-deficient mice revealed that mast cells are not a source of 5-HT, whereas transfusion of platelets from wild-type and TPH1-deficient mice revealed that only platelets containing 5-HT enhanced AAI. Lack of endogenous 5-HT in vitro and in vivo was associated with an impaired Th2-priming capacity of BMDC. CONCLUSIONS In summary, TPH1 deficiency or inhibition reduces AAI. Platelet- and not mast cell-derived 5-HT is pivotal in AAI, and lack of 5-HT leads to an impaired Th2-priming capacity of BMDC. Thus, targeting TPH1 could offer novel therapeutic options for asthma.


Gastroenterology | 2012

Purinergic P2Y2 Receptors Promote Neutrophil Infiltration and Hepatocyte Death in Mice With Acute Liver Injury

Cemil Korcan Ayata; Stephanie C. Ganal; Birgit Hockenjos; Karolina Willim; Rodolfo de Paula Vieira; Melanie Grimm; Bernard Robaye; Jean-Marie Boeynaems; Francesco Di Virgilio; Patrizia Pellegatti; Andreas Diefenbach; Marco Idzko; Peter Hasselblatt

BACKGROUND & AIMS During progression of liver disease, inflammation affects survival of hepatocytes. Endogenous release of adenosine triphosphate (ATP) in the liver activates purinergic P2 receptors (P2R), which regulate inflammatory responses, but little is known about the roles of these processes in the development of acute hepatitis. METHODS We induced acute hepatitis in C57BL/6 mice by intravenous injection of concanavalin A and then analyzed liver concentrations of ATP and expression of P2R. We assessed P2Y(2)R(-/-) mice and C57BL/6 wild-type mice injected with suramin, a pharmacologic inhibitor of P2YR. Toxic liver failure was induced in mice by intraperitoneal injection of acetaminophen. Hepatocyte-specific functions of P2R signaling were analyzed in primary mouse hepatocytes. RESULTS Induction of acute hepatitis in wild-type C57BL/6 mice released large amounts of ATP from livers and induced expression of P2Y(2)R. Liver damage and necrosis were greatly reduced in P2Y(2)R(-/-) mice and C57BL/6 mice given injections of suramin. Acetaminophen-induced liver damage was reduced in P2Y(2)R(-/-) mice. Analysis of liver-infiltrating immune cells during acute hepatitis revealed that expression of P2Y(2)R in bone marrow-derived cells was required for liver infiltration by neutrophils and subsequent liver damage. Hepatic expression of P2Y(2)R interfered with expression of genes that regulate cell survival, and promoted tumor necrosis factor-α-mediated cell death, in a cell-autonomous manner. CONCLUSIONS Extracellular ATP and P2Y(2)R have cell-type specific, but synergistic functions during liver damage that regulate cellular immune responses and promote hepatocyte death. Reagents designed to target P2Y(2)R might be developed to treat inflammatory liver disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

P2Y6 Deficiency Limits Vascular Inflammation and Atherosclerosis in Mice

Peter Stachon; Alexander Peikert; Nathaly Anto Michel; Sonja Hergeth; Timoteo Marchini; Dennis Wolf; Bianca Dufner; Natalie Hoppe; Cemil Korcan Ayata; Melanie Grimm; Sanja Cicko; Lisa Schulte; Jochen Reinöhl; Constantin von zur Muhlen; Christoph Bode; Marco Idzko; Andreas Zirlik

Objective— Nucleotides such as ATP, ADP, UTP, and UDP serve as proinflammatory danger signals via purinergic receptors on their release to the extracellular space by activated or dying cells. UDP binds to the purinergic receptor Y6 (P2Y6) and propagates vascular inflammation by inducing the expression of chemokines such as monocyte chemoattractant protein 1, interleukin-8, or its mouse homologsCCL1 (chemokine [C-C motif] ligand 1)/keratinocyte chemokine, CXCL2 (chemokine [C-X-C motif] ligand 2)/macrophage inflammatory protein 2, and CXCL5 (chemokine [C-X-C motif] ligand 5)/LIX, and adhesion molecules such as vascular cell adhesion molecule 1 and intercellular cell adhesion molecule 1. Thus, P2Y6 contributes to leukocyte recruitment and inflammation in conditions such as allergic asthma or sepsis. Because atherosclerosis is a chronic inflammatory disease driven by leukocyte recruitment to the vessel wall, we hypothesized a role of P2Y6 in atherogenesis. Approach and Results— Intraperitoneal stimulation of wild-type mice with UDP induced rolling and adhesion of leukocytes to the vessel wall as assessed by intravital microscopy. This effect was not present in P2Y6-deficient mice. Atherosclerotic aortas of low-density lipoprotein receptor–deficient mice consuming high-cholesterol diet for 16 weeks expressed significantly more transcripts and protein of P2Y6 than respective controls. Finally, P2Y6 −/−/low-density lipoprotein receptor–deficient mice consuming high-cholesterol diet for 16 weeks developed significantly smaller atherosclerotic lesions compared with P2Y6 +/+/low-density lipoprotein receptor–deficient mice. Bone marrow transplantation identified a crucial role of P2Y6 on vascular resident cells, most likely endothelial cells, on leukocyte recruitment and atherogenesis. Atherosclerotic lesions of P2Y6-deficient mice contained fewer macrophages and fewer lipids as determined by immunohistochemistry. Mechanistically, RNA expression of vascular cell adhesion molecule 1 and interleukin-6 was decreased in these lesions and P2Y6-deficient macrophages took up less modified low-density lipoprotein cholesterol. Conclusions— We show for the first time that P2Y6 deficiency limits atherosclerosis and plaque inflammation in mice.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Purinergic Receptor Y6 Deficiency Limits Vascular Inflammation and Atherosclerosis in Mice

Peter Stachon; Alexander Peikert; Nathaly Anto Michel; Sonja Hergeth; Timoteo Marchini; Dennis Wolf; Bianca Dufner; Natalie Hoppe; Cemil Korcan Ayata; Melanie Grimm; Sanja Cicko; Lisa Schulte; Jochen Reinöhl; Constantin von zur Muhlen; Christoph Bode; Marco Idzko; Andreas Zirlik

Objective— Nucleotides such as ATP, ADP, UTP, and UDP serve as proinflammatory danger signals via purinergic receptors on their release to the extracellular space by activated or dying cells. UDP binds to the purinergic receptor Y6 (P2Y6) and propagates vascular inflammation by inducing the expression of chemokines such as monocyte chemoattractant protein 1, interleukin-8, or its mouse homologsCCL1 (chemokine [C-C motif] ligand 1)/keratinocyte chemokine, CXCL2 (chemokine [C-X-C motif] ligand 2)/macrophage inflammatory protein 2, and CXCL5 (chemokine [C-X-C motif] ligand 5)/LIX, and adhesion molecules such as vascular cell adhesion molecule 1 and intercellular cell adhesion molecule 1. Thus, P2Y6 contributes to leukocyte recruitment and inflammation in conditions such as allergic asthma or sepsis. Because atherosclerosis is a chronic inflammatory disease driven by leukocyte recruitment to the vessel wall, we hypothesized a role of P2Y6 in atherogenesis. Approach and Results— Intraperitoneal stimulation of wild-type mice with UDP induced rolling and adhesion of leukocytes to the vessel wall as assessed by intravital microscopy. This effect was not present in P2Y6-deficient mice. Atherosclerotic aortas of low-density lipoprotein receptor–deficient mice consuming high-cholesterol diet for 16 weeks expressed significantly more transcripts and protein of P2Y6 than respective controls. Finally, P2Y6 −/−/low-density lipoprotein receptor–deficient mice consuming high-cholesterol diet for 16 weeks developed significantly smaller atherosclerotic lesions compared with P2Y6 +/+/low-density lipoprotein receptor–deficient mice. Bone marrow transplantation identified a crucial role of P2Y6 on vascular resident cells, most likely endothelial cells, on leukocyte recruitment and atherogenesis. Atherosclerotic lesions of P2Y6-deficient mice contained fewer macrophages and fewer lipids as determined by immunohistochemistry. Mechanistically, RNA expression of vascular cell adhesion molecule 1 and interleukin-6 was decreased in these lesions and P2Y6-deficient macrophages took up less modified low-density lipoprotein cholesterol. Conclusions— We show for the first time that P2Y6 deficiency limits atherosclerosis and plaque inflammation in mice.


Clinical & Experimental Allergy | 2010

Iloprost has potent anti-inflammatory properties on human monocyte-derived dendritic cells

Tobias Müller; Thorsten Dürk; B. Blumenthal; Y. Herouy; Stephan Sorichter; Melanie Grimm; Elisabeth Panther; Sanja Cicko; Johannes Norgauer; Marco Idzko

Background The stable prostaglandin I2 analogue (iloprost) iloprost has been shown to inhibit allergic airway inflammation in mice by modulating the function of myeloid dendritic cells (DCs).


Clinical & Experimental Allergy | 2010

Local administration of uridine suppresses the cardinal features of asthmatic airway inflammation

Tobias Müller; Melanie Grimm; R. P. De Vieira; Sanja Cicko; Thorsten Dürk; Stephan Sorichter; Gernot Zissel; Marco Idzko

Background The immuno‐modulatory properties of nucleotides such as adenosine or inosine, have been described extensively. Recently, the nucleoside uridine and its analogue 4‐thiouridine have gained attention for their protective role in acute lung inflammation.

Collaboration


Dive into the Melanie Grimm's collaboration.

Top Co-Authors

Avatar

Marco Idzko

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Sanja Cicko

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge