Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Gross is active.

Publication


Featured researches published by Melanie Gross.


Environmental Toxicology and Chemistry | 2013

Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data

Lennart Weltje; Pete Simpson; Melanie Gross; Mark Crane; James R. Wheeler

The relative sensitivity of amphibians to chemicals in the environment, including plant protection product active substances, is the subject of ongoing scientific debate. The objective of this study was to compare systematically the relative sensitivity of amphibians and fish to chemicals. Acute and chronic toxicity data were obtained from the U.S. Environmental Protection Agency (U.S. EPA) ECOTOX database and were supplemented with data from the scientific and regulatory literature. The overall outcome is that fish and amphibian toxicity data are highly correlated and that fish are more sensitive (both acute and chronic) than amphibians. In terms of acute sensitivity, amphibians were between 10- and 100-fold more sensitive than fish for only four of 55 chemicals and more than 100-fold more sensitive for only two chemicals. However, a detailed inspection of these cases showed a similar acute sensitivity of fish and amphibians. Chronic toxicity data for fish were available for 52 chemicals. Amphibians were between 10- and 100-fold more sensitive than fish for only two substances (carbaryl and dexamethasone) and greater than 100-fold more sensitive for only a single chemical (sodium perchlorate). The comparison for carbaryl was subsequently determined to be unreliable and that for sodium perchlorate is a potential artifact of the exposure medium. Only a substance such as dexamethasone, which interferes with a specific aspect of amphibian metamorphosis, might not be detected using fish tests. However, several other compounds known to influence amphibian metamorphosis were included in the analysis, and these did not affect amphibians disproportionately. These analyses suggest that additional amphibian testing is not necessary during chemical risk assessment.


Integrated Environmental Assessment and Management | 2017

Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

Peter Matthiessen; Gerald T. Ankley; Ronald C. Biever; Poul Bjerregaard; Christopher J. Borgert; Kristin E. Brugger; Amy Blankinship; Janice E. Chambers; Katherine Coady; Lisa A. Constantine; Zhichao Dang; Nancy D. Denslow; David A. Dreier; Steve Dungey; L. Earl Gray; Melanie Gross; Patrick D. Guiney; Markus Hecker; Henrik Holbech; Taisen Iguchi; Sarah M. Kadlec; Natalie K. Karouna-Renier; Ioanna Katsiadaki; Yukio Kawashima; Werner Kloas; Henry O. Krueger; Anu Kumar; Laurent Lagadic; Annegaaike Leopold; Steven L. Levine

A SETAC Pellston Workshop® “Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)” was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrinedisrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS—not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17β-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available.


Integrated Environmental Assessment and Management | 2007

Thresholds of toxicological concern for endocrine active substances in the aquatic environment

Melanie Gross; Klaus Daginnus; Genevieve Deviller; Watze de Wolf; Stephen Dungey; C. Galli; Anne Gourmelon; Miriam Jacobs; Peter Matthiessen; Christian Micheletti; Earle Nestmann; Manuela Pavan; Ana Payá-Pérez; Hans-Toni Ratte; Bob Safford; Birgit Sokull‐Klüttgen; Frauke Stock; Hans-Christian Stolzenberg; James R. Wheeler; Marc Willuhn; Andrew Worth; José Z. Comenges; Mark Crane

The threshold of toxicological concern (TTC) concept proposes that an exposure threshold value can be derived for chemicals, below which no significant risk to human health or the environment is expected. This concept goes further than setting acceptable exposure levels for individual chemicals, because it attempts to set a de minimis value for chemicals, including those of unknown toxicity, by taking the chemicals structure or mode of action (MOA) into consideration. This study examines the use of the TTC concern concept for endocrine active substances (EAS) with an estrogenic MOA. A case study formed the basis for a workshop of regulatory, industry and academic scientists held to discuss the use of the TTC in aquatic environmental risk assessment. The feasibility and acceptability, general advantages and disadvantages, and the specific issues that need to be considered when applying the TTC concept for EAS in risk assessment were addressed. Issues surrounding the statistical approaches used to derive TTCs were also discussed. This study presents discussion points and consensus findings of the workshop.


Integrated Environmental Assessment and Management | 2017

Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

Katherine Coady; Ronald C. Biever; Nancy D. Denslow; Melanie Gross; Patrick D. Guiney; Henrik Holbech; Natalie K. Karouna-Renier; Ioanna Katsiadaki; Hank Krueger; Steven L. Levine; Gerd Maack; Mike Williams; Jeffrey C. Wolf; Gerald T. Ankley

In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid signaling. Integr Environ Assess Manag 2017;13:302-316.


Integrated Environmental Assessment and Management | 2010

Multi-criteria decision analysis of test endpoints for detecting the effects of endocrine active substances in fish full life cycle tests.

Mark Crane; Melanie Gross; Peter Matthiessen; Gerald T. Ankley; Stephen Axford; Poul Bjerregaard; Ross Brown; Peter M. Chapman; Michael Dorgeloh; Malyka Galay-Burgos; John W. Green; Charles Hazlerigg; John Janssen; Kai Lorenzen; Joanne L. Parrott; Hans Rufli; Christoph Schäfers; Masanori Seki; Hans-Christian Stolzenberg; Nelly van der Hoeven; Dick Vethaak; Ian J. Winfield; Sabine Zok; James R. Wheeler

Fish full life cycle (FFLC) tests are increasingly required in the ecotoxicological assessment of endocrine active substances. However, FFLC tests have not been internationally standardized or validated, and it is currently unclear how such tests should best be designed to provide statistically sound and ecologically relevant results. This study describes how the technique of multi-criteria decision analysis (MCDA) was used to elicit the views of fish ecologists, aquatic ecotoxicologists and statisticians on optimal experimental designs for assessing the effects of endocrine active chemicals on fish. In MCDA qualitative criteria (that can be valued, but not quantified) and quantitative criteria can be used in a structured decision-making process. The aim of the present application of MCDA is to present a logical means of collating both data and expert opinions on the best way to focus FFLC tests on endocrine active substances. The analyses are presented to demonstrate how MCDA can be used in this context. Each of 3 workgroups focused on 1 of 3 species: fathead minnow (Pimephales promelas), Japanese medaka (Oryzias latipes), and zebrafish (Danio rerio). Test endpoints (e.g., fecundity, growth, gonadal histopathology) were scored for each species for various desirable features such as statistical power and ecological relevance, with the importance of these features determined by assigning weights to them, using a swing weighting procedure. The endpoint F1 fertilization success consistently emerged as a preferred option for all species. In addition, some endpoints scored highly in particular species, such as development of secondary sexual characteristics (fathead minnow) and sex ratio (zebrafish). Other endpoints such as hatching success ranked relatively highly and should be considered as useful endpoints to measure in tests with any of the fish species. MCDA also indicated relatively less preferred endpoints in fish life cycle tests. For example, intensive histopathology consistently ranked low, as did measurement of diagnostic biomarkers, such as vitellogenin, most likely due to the high costs of these methods or their limited ecological relevance. Life cycle tests typically do not focus on identifying toxic modes and/or mechanisms of action, but rather, single chemical concentration-response relationships for endpoints (e.g., survival, growth, reproduction) that can be translated into evaluation of risk. It is, therefore, likely to be an inefficient use of limited resources to measure these mechanism-specific endpoints in life cycle tests, unless the value of such endpoints for answering particular questions justifies their integration in specific case studies.


Regulatory Toxicology and Pharmacology | 2017

Weight of evidence approaches for the identification of endocrine disrupting properties of chemicals: Review and recommendations for EU regulatory application

Melanie Gross; Richard M. Green; Lennart Weltje; James R. Wheeler

ABSTRACT A Weight‐of‐evidence (WoE) evaluation should be applied in assessing all the available data for the identification of endocrine disrupting (ED) properties of chemicals. The European Commission draft acts specifying criteria under the biocidal products and plant protection products regulations require that WoE is implemented for the assessment of such products. However, only some general considerations and principles of how a WoE should be conducted are provided. This paper reviews WoE approaches to distil key recommendations specifically for the evaluation of potential ED properties of chemicals. In a manner, which is consistent with existing, published WoE frameworks, the WoE evaluation of ED properties can be divided into four phases: 1) Definition of causal questions and data gathering and selection, 2) Review of individual studies, 3) Data integration and evaluation, and 4) Drawing conclusions based on inferences. Recommendations are made on how to conduct each phase robustly and transparently to help guide the WoE evaluation of potential endocrine disrupting properties of chemicals within a European regulatory context. HighlightsWeight of Evidence for endocrine disruption is embedded in European legislation.Data collection and selection should follow systematic review methods.Organising reliable studies in the OECD Conceptual Framework facilitates evaluation.Mode of Action and adversity are evaluated to establish if the definition is met.


Environmental Toxicology and Chemistry | 2018

A critical review of the environmental occurrence and potential effects in aquatic vertebrates of the potent androgen receptor agonist 17β‐trenbolone

Gerald T. Ankley; Katherine Coady; Melanie Gross; Henrik Holbech; Steven L. Levine; Gerd Maack; Mike Williams

Trenbolone acetate is widely used in some parts of the world for its desirable anabolic effects on livestock. Several metabolites of the acetate, including 17β-trenbolone, have been detected at low nanograms per liter concentrations in surface waters associated with animal feedlots. The 17β-trenbolone isomer can affect androgen receptor signaling pathways in various vertebrate species at comparatively low concentrations/doses. The present article provides a comprehensive review and synthesis of the existing literature concerning exposure to and biological effects of 17β-trenbolone, with an emphasis on potential risks to aquatic animals. In vitro studies indicate that, although 17β-trenbolone can activate several nuclear hormone receptors, its highest affinity is for the androgen receptor in all vertebrate taxa examined, including fish. Exposure of fish to nanograms per liter water concentrations of 17β-trenbolone can cause changes in endocrine function in the short term, and adverse apical effects in longer exposures during development and reproduction. Impacts on endocrine function typically are indicative of inappropriate androgen receptor signaling, such as changes in sex steroid metabolism, impacts on gonadal stage, and masculinization of females. Exposure of fish to 17β-trenbolone during sexual differentiation in early development can greatly skew sex ratios, whereas adult exposures can adversely impact fertility and fecundity. To fully assess ecosystem-level risks, additional research is warranted to address uncertainties as to the degree/breadth of environmental exposures and potential population-level effects of 17β-trenbolone in sensitive species. Environ Toxicol Chem 2018;37:2064-2078. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Integrated Environmental Assessment and Management | 2016

Retraction: Environmental risk assessment of human pharmaceuticals: Regulatory developments

Melanie Gross; Dean Leverett; Graham Merrington; David Taylor

This article was published online on 1 October 2015, on Wiley Online Library (wileyonlinelibrary.com). The article has been withdrawn by agreement between the authors, the journal Editor-in-Chief, the Society of Environmental Toxicology and Chemistry, and Wiley Periodicals, Inc. The authors initiated the withdrawal on their accord after consideration of regulatory analysis and conclusions appearing in the article, which the authors felt required substantial revision to incorporate new and important regulatory developments not addressed in the article.


Toxicology Letters | 2018

Endocrine Disruption: Current approaches for regulatory testing and assessment of plant protection products are fit for purpose

Peter Day; Richard M. Green; Melanie Gross; Lennart Weltje; James R. Wheeler

The ongoing debate concerning the regulation of endocrine disruptors, has increasingly led to questions concerning the current testing of chemicals and whether this is adequate for the assessment of potential endocrine disrupting effects. This paper describes the current testing approaches for plant protection product (PPP) active substances in the European Union and the United States and how they relate to the assessment of endocrine disrupting properties for human and environmental health. This includes a discussion of whether the current testing approaches cover modalities other than the estrogen, androgen, thyroid and steroidogenesis (EATS) pathways, sensitive windows of exposure, adequate assessment of human endocrine disorders and wildlife species, and the determination of thresholds for endocrine disruption. It is concluded, that the scope and nature of the core and triggered data requirements for PPP active substances are scientifically robust to address adverse effects mediated through endocrine mode(s) of action and to characterise these effects in terms of dose response.


Environmental Toxicology and Chemistry | 2001

Abnormalities in sexual development of the amphipod Gammarus pulex (L.) found below sewage treatment works.

Melanie Gross; Dawn Maycock; Michael C. Thorndyke; David Morritt; Mark Crane

Collaboration


Dive into the Melanie Gross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lennart Weltje

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald T. Ankley

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Holbech

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge