Melanie J. Beazley
University of Alabama
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melanie J. Beazley.
PLOS ONE | 2012
Melanie J. Beazley; Robert J. Martinez; Suja Rajan; Jessica Powell; Yvette M. Piceno; Lauren M. Tom; Gary L. Andersen; Terry C. Hazen; Joy D. Van Nostrand; Jizhong Zhou; Behzad Mortazavi; Patricia A. Sobecky
Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.
Geomicrobiology Journal | 2009
Melanie J. Beazley; Robert J. Martinez; Patricia A. Sobecky; Samuel M. Webb; Martial Taillefert
The remediation of uranium from soils and groundwater at Department of Energy (DOE) sites across the United States represents a major environmental issue, and bioremediation has exhibited great potential as a strategy to immobilize U in the subsurface. The bioreduction of U(VI) to insoluble U(IV) uraninite has been proposed to be an effective bioremediation process in anaerobic conditions. However, high concentrations of nitrate and low pH found in some contaminated areas have been shown to limit the efficiency of microbial reduction of uranium. In the present study, nonreductive uranium biomineralization promoted by microbial phosphatase activity was investigated in anaerobic conditions in the presence of high nitrate and low pH as an alternative approach to the bioreduction of U(VI). A facultative anaerobe, Rahnella sp. Y9602, isolated from soils at DOEs Oak Ridge Field Research Center (ORFRC), was able to respire anaerobically on nitrate as a terminal electron acceptor in the presence of glycerol-3-phosphate (G3P) as the sole carbon and phosphorus source and hydrolyzed sufficient phosphate to precipitate 95% total uranium after 120 hours in synthetic groundwater at pH 5.5. Synchrotron X-ray diffraction and X-ray absorption spectroscopy identified the mineral formed as chernikovite, a U(VI) autunite-type mineral. The results of this study suggest that in contaminated subsurfaces, such as at the ORFRC, where high concentrations of nitrate and low pH may limit uranium bioreduction, the biomineralization of U(VI) phosphate minerals may be a more attractive approach for in situ remediation providing that a source of organophosphate is supplied for bioremediation.
Journal of Hazardous Materials | 2013
Behzad Mortazavi; Agota Horel; Melanie J. Beazley; Patricia A. Sobecky
The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO(2)) production was measured daily for 42 days and the carbon isotopic ratio of CO(2) (δ(13)CO(2)) was used to determine the fraction of CO(2) derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter.
PLOS ONE | 2014
Robert J. Martinez; Cindy H. Wu; Melanie J. Beazley; Gary L. Andersen; Mark E. Conrad; Terry C. Hazen; Martial Taillefert; Patricia A. Sobecky
Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4 3−) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration.
American Mineralogist | 2012
Andrew S. Madden; Andrew L. Swindle; Melanie J. Beazley; Ji-Won Moon; Bruce Ravel; Tommy J. Phelps
Abstract The texture and mineralogy of solid phases resulting from biogeochemical metal reduction of U(VI)-FeOOH slurries was investigated over a period of four years. Solid-phase reaction products were analyzed with EXAFS, TEM, and XRD following fermentative reduction of uranium-loaded ferric hydroxide precursors with 0.01 and 0.05 cation mole fraction (CMF) U by cultures of Thermoanaerobacter sp. strain TOR-39. Only minor changes could be distinguished between 3 and 51 months for most slurries. Magnetite, goethite, uraninite, and minor akaganéite were present after 3 months at both U-CMFs. Akaganéite was not detected by XRD after 3 months, but was still observed by TEM after 50 months. Increasing uranium in the starting slurries led to a greater proportion of oxidized iron in the solid-phase products. Euhedral goethite and subhedral to euhedral magnetite were observed at all times. Uraninite was observed in clusters of <10 nm particles without any particular relationship to the iron minerals. HRTEM imaging indicated that even the smallest uraninite particles were well crystallized, with textures that remained consistent throughout the duration of experiments. X-ray absorption spectra after 3 months indicated 100% and 96.4% U(IV) in 0.01 and 0.05 CMF U slurries, respectively. EXAFS spectra were consistent with uraninite at both uranium levels, plus additional non-uraninite U(IV) for 0.05 CMF U. One 0.05 CMF U culture slurry was found to have a lower pH and a more oxidized final iron mineral assemblage; in this case uraninite was not observed by XRD, but large (101 nm average diameter) rounded uraninite grains were observed by TEM. These grains were observed in chains or aggregates often connected by necks, in textures suggestive of biological influence. HRTEM demonstrated each grain was composed of poorly oriented, primary, 2-5 nm uraninite crystallites. Uraninite crystal growth occurred by nanoparticle aggregation, but ripening was not observed even though incubation temperatures were held at 65 °C for 20 days. Thus, previous studies of biogenic nanoparticulate uraninite short-term reactivity are likely to be representative of systems aged over a period of years.
Advances in Ecology | 2014
Robert J. Martinez; Melanie J. Beazley; Patricia A. Sobecky
Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are often too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.
Environmental Pollution | 2013
Behzad Mortazavi; Agota Horel; Jennifer S. Anders; Arsalan Mirjafari; Melanie J. Beazley; Patricia A. Sobecky
We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg(-1) sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons.
Environmental Microbiology | 2007
Robert J. Martinez; Melanie J. Beazley; Martial Taillefert; Adrian K. Arakaki; Jeffrey Skolnick; Patricia A. Sobecky
Environmental Science & Technology | 2007
Melanie J. Beazley; Robert J. Martinez; Patricia A. Sobecky; Samuel M. Webb; Martial Taillefert
Geochimica et Cosmochimica Acta | 2011
Melanie J. Beazley; Robert J. Martinez; Samuel M. Webb; Patricia A. Sobecky; Martial Taillefert