Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie J. Percy is active.

Publication


Featured researches published by Melanie J. Percy.


The New England Journal of Medicine | 2008

A Gain-of-Function Mutation in the HIF2A Gene in Familial Erythrocytosis

Melanie J. Percy; Paul W. Furlow; Guy S. Lucas; Xiping Li; Terence Lappin; Mary Frances McMullin; Frank S. Lee

Hypoxia-inducible factor (HIF) alpha, which has three isoforms, is central to the continuous balancing of the supply and demand of oxygen throughout the body. HIF-alpha is a transcription factor that modulates a wide range of processes, including erythropoiesis, angiogenesis, and cellular metabolism. We describe a family with erythrocytosis and a mutation in the HIF2A gene, which encodes the HIF-2alpha protein. Our functional studies indicate that this mutation leads to stabilization of the HIF-2alpha protein and suggest that wild-type HIF-2alpha regulates erythropoietin production in adults.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Regulation of human metabolism by hypoxia- inducible factor

Federico Formenti; Dumitru Constantin-Teodosiu; Yaso Emmanuel; Jane Cheeseman; Keith L. Dorrington; Lindsay M. Edwards; Sandy M. Humphreys; Terence Lappin; M F McMullin; Christopher McNamara; Wendy Mills; John J. Murphy; David F. O'Connor; Melanie J. Percy; Peter J. Ratcliffe; Thomas G. Smith; Marilyn Treacy; Keith N. Frayn; Paul L. Greenhaff; Fredrik Karpe; Kieran Clarke; Peter A. Robbins

The hypoxia-inducible factor (HIF) family of transcription factors directs a coordinated cellular response to hypoxia that includes the transcriptional regulation of a number of metabolic enzymes. Chuvash polycythemia (CP) is an autosomal recessive human disorder in which the regulatory degradation of HIF is impaired, resulting in elevated levels of HIF at normal oxygen tensions. Apart from the polycythemia, CP patients have marked abnormalities of cardiopulmonary function. No studies of integrated metabolic function have been reported. Here we describe the response of these patients to a series of metabolic stresses: exercise of a large muscle mass on a cycle ergometer, exercise of a small muscle mass (calf muscle) which allowed noninvasive in vivo assessments of muscle metabolism using 31P magnetic resonance spectroscopy, and a standard meal tolerance test. During exercise, CP patients had early and marked phosphocreatine depletion and acidosis in skeletal muscle, greater accumulation of lactate in blood, and reduced maximum exercise capacities. Muscle biopsy specimens from CP patients showed elevated levels of transcript for pyruvate dehydrogenase kinase, phosphofructokinase, and muscle pyruvate kinase. In cell culture, a range of experimental manipulations have been used to study the effects of HIF on cellular metabolism. However, these approaches provide no potential to investigate integrated responses at the level of the whole organism. Although CP is relatively subtle disorder, our study now reveals a striking regulatory role for HIF on metabolism during exercise in humans. These findings have significant implications for the development of therapeutic approaches targeting the HIF pathway.


Annual Review of Pathology-mechanisms of Disease | 2011

The HIF pathway and erythrocytosis.

Frank S. Lee; Melanie J. Percy

Because of the central role that red blood cells play in the delivery of oxygen to tissues of the body, red blood cell mass must be controlled at precise levels. The glycoprotein hormone erythropoietin (EPO) regulates red blood cell mass. EPO transcription, in turn, is regulated by a distinctive oxygen-sensing mechanism. In this pathway, prolyl hydroxylase domain protein (PHD) site-specifically hydroxylates the α-subunit of the transcription factor hypoxia-inducible factor α (HIF-α), thereby targeting the latter for degradation by the von Hippel-Lindau tumor-suppressor protein (VHL). Under hypoxic conditions, this posttranslational modification of HIF-α is inhibited, which stabilizes it and promotes the transcriptional activation of genes, including that for EPO. Rare patients with erythrocytosis have mutations in the genes encoding for PHD2, HIF-2α, and VHL, which implicates these proteins as critical to the proper control of red blood cell mass in humans.


Blood | 2008

Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis.

Melanie J. Percy; Philip A. Beer; Gavin Campbell; Ad W. Dekker; Anthony R. Green; David Oscier; M. Glenn Rainey; Richard van Wijk; Marion Wood; Terence Lappin; Mary Frances McMullin; Frank S. Lee

Erythrocytosis can arise from deregulation of the erythropoietin (Epo) axis resulting from defects in the oxygen-sensing pathway. Epo synthesis is controlled by the hypoxia inducible factor (HIF) complex, composed of an alpha and a beta subunit. There are 2 main alpha subunits, HIF-1 alpha and HIF-2 alpha. Recently, a HIF-2 alpha Gly537Trp mutation was identified in a family with erythrocytosis. This raises the possibility of HIF2A mutations being associated with other cases of erythrocytosis. We now report a subsequent analysis of HIF2A in a cohort of 75 erythrocytosis patients and identify 4 additional patients with novel heterozygous Met535Val and Gly537Arg mutations. All patients presented at a young age with elevated serum Epo. Mutations at Gly-537 account for 4 of 5 HIF2A mutations associated with erythrocytosis. These findings support the importance of HIF-2 alpha in human Epo regulation and warrant investigation of HIF2A in patients with unexplained erythrocytosis.


British Journal of Haematology | 2008

Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency

Melanie J. Percy; T. R. J. Lappin

Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH‐cytochrome b5 reductase (cb5r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b5 reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb5r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb5r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb5r to be assessed and has provided insight into the function of cb5r.


Molecular Cancer | 2003

A common polymorphism in the oxygen-dependent degradation (ODD) domain of hypoxia inducible factor-1α (HIF-1α) does not impair Pro-564 hydroxylation

Melanie J. Percy; Sharon M. Mooney; Mary Frances McMullin; Adrian Flores; Terence R. J. Lappin; Frank S. Lee

BackgroundThe hypoxia-inducible factor (HIF) transcription complex, which is activated by low oxygen tension, controls a diverse range of cellular processes including angiogenesis and erythropoiesis. Under normoxic conditions, the α subunit of HIF is rapidly degraded in a manner dependent on hydroxylation of two conserved proline residues at positions 402 and 564 in HIF-1α in the oxygen-dependent degradation (ODD) domain. This allows subsequent recognition by the von Hippel-Lindau (VHL) tumor suppressor protein, which targets HIF for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, prolyl hydroxylation of HIF is inhibited, allowing it to escape VHL-mediated degradation. The transcriptional regulation of the erythropoietin gene by HIF raises the possibility that HIF may play a role in disorders of erythropoiesis, such as idiopathic erythrocytosis (IE).ResultsPatients with IE were screened for changes in the HIF-1 α coding sequence, and a change in the ODD domain that converts Pro-582 to Ser was identified in several patients. This same change, however, was also detected at a significant frequency, 0.073, in unaffected controls compared to 0.109 in the IE patient group. In vitro hydroxylation assays examining this amino acid change failed to reveal a discernible effect on HIF hydroxylation at Pro-564.ConclusionThe Pro582Ser change represents a common polymorphism of HIF-1α that does not impair HIF-1α prolyl hydroxylation. Although the Pro582Ser polymorphism is located in the ODD domain of HIF-1α it does not diminish the association of HIF-1α with VHL. Thus, it is unlikely that this polymorphism accounts for the erythrocytosis in the group of IE patients studied.


Journal of Biological Chemistry | 2013

Erythrocytosis and pulmonary hypertension in a mouse model of human HIF2A gain of function mutation.

Qiulin Tan; Heddy Kerestes; Melanie J. Percy; Ralph A. Pietrofesa; Li Chen; Tejvir S. Khurana; Melpo Christofidou-Solomidou; Terence Lappin; Frank S. Lee

Background: Missense mutations have been identified in the HIF2A gene in patients with erythrocytosis. Results: A mouse knock-in line that models the first described HIF2A mutation exhibits erythrocytosis and pulmonary hypertension. Conclusion: The missense mutation is the cause of erythrocytosis, and is accompanied by pulmonary hypertension. Significance: The study demonstrates sequelae of global Hif-2α gain of function. The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO). Studies employing genetically modified mice point to Hif-2α, one of two main Hif-α isoforms, as being the critical regulator of Epo in the adult mouse. More recently, erythrocytosis patients with heterozygous point mutations in the HIF2A gene have been identified; whether these mutations were polymorphisms unrelated to the phenotype could not be ruled out. In the present report, we characterize a mouse line bearing a G536W missense mutation in the Hif2a gene that corresponds to the first such human mutation identified (G537W). We obtained mice bearing both heterozygous and homozygous mutations at this locus. We find that these mice display, in a mutation dose-dependent manner, erythrocytosis and pulmonary hypertension with a high degree of penetrance. These findings firmly establish missense mutations in HIF-2α as a cause of erythrocytosis, highlight the importance of this HIF-α isoform in erythropoiesis, and point to physiologic consequences of HIF-2α dysregulation.


Neurodegenerative Diseases | 2006

Induction of signalling in non-erythroid cells by pharmacological levels of erythropoietin

Elaine A. Dunlop; Melanie J. Percy; Alexander P. Maxwell; T. R. J. Lappin

Erythropoiesis is maintained by the hormone erythropoietin (Epo) binding to its cognate receptor (EpoR) on erythroid progenitor cells. The Epo-EpoR interaction initiates a signal transduction process that regulates the survival, growth and differentiation of these cells. Originally perceived as highly lineage-restricted, Epo is now recognised to have pleiotropic effects extending beyond the maintenance of red cell mass. Functional interactions between Epo and EpoR have been demonstrated in numerous cells and tissues. EpoR expression on neoplastic cells leads to concern that recombinant human erythropoietin, used to treat anaemia in cancer patients, may augment tumour growth. Here we demonstrate that EPO, at pharmacological concentrations, can activate three major signalling cascades, viz. the Jak2/STAT5, Ras/ERK and PI3K/Akt pathways in non-small cell lung carcinoma (NSCLC) cell lines. EpoR synthesis is normally under the control of GATA-1, but NSCLC cells exhibit decreased GATA-1 levels compared to GATA-2, -3 and -6, suggesting that GATA-1 is not essential for EpoR production. The increased Epo-induced signalling was not associated with a growth advantage for the NSCLC cells.


Blood | 2014

Hypoxia-inducible factor 2α regulates key neutrophil functions in humans, mice, and zebrafish

A. A. Roger Thompson; Philip M. Elks; Helen M. Marriott; Suttida Eamsamarng; Kathryn R. Higgins; Amy Lewis; Lynne Williams; Selina Parmar; Gary Shaw; Emmet E. McGrath; Federico Formenti; Fredericus J. Van Eeden; Vuokko L. Kinnula; Christopher W. Pugh; Ian Sabroe; David H. Dockrell; Edwin R. Chilvers; Peter A. Robbins; Melanie J. Percy; M. Celeste Simon; Randall S. Johnson; Stephen A. Renshaw; Moira K. B. Whyte; Sarah R. Walmsley

Neutrophil lifespan and function are regulated by hypoxia via components of the hypoxia inducible factor (HIF)/von Hippel Lindau/hydroxylase pathway, including specific roles for HIF-1α and prolyl hydroxylase-3. HIF-2α has both distinct and overlapping biological roles with HIF-1α and has not previously been studied in the context of neutrophil biology. We investigated the role of HIF-2α in regulating key neutrophil functions. Human and murine peripheral blood neutrophils expressed HIF-2α, with expression up-regulated by acute and chronic inflammatory stimuli and in disease-associated inflammatory neutrophil. HIF2A gain-of-function mutations resulted in a reduction in neutrophil apoptosis both ex vivo, through the study of patient cells, and in vivo in a zebrafish tail injury model. In contrast, HIF-2α-deficient murine inflammatory neutrophils displayed increased sensitivity to nitrosative stress induced apoptosis ex vivo and increased neutrophil apoptosis in vivo, resulting in a reduction in neutrophilic inflammation and reduced tissue injury. Expression of HIF-2α was temporally dissociated from HIF-1α in vivo and predominated in the resolution phase of inflammation. These data support a critical and selective role for HIF-2α in persistence of neutrophilic inflammation and provide a platform to dissect the therapeutic utility of targeting HIF-2α in chronic inflammatory diseases.


British Journal of Haematology | 1998

Erythrocytosis due to a mutation in the erythropoietin receptor gene

Melanie J. Percy; Mary Frances McMullin; Anthony W. W. Roques; Nigel B. Westwood; Jay Acharya; Anne E. Hughes; Terence Lappin; T. C. Pearson

Familial erythrocytosis, associated with high haemoglobin levels and low serum erythropoietin (Epo), has been shown to co‐segregate with a sequence repeat polymorphism at the 5′ region of the erythropoietin receptor (EpoR) in a large Finnish family.  We have investigated the cause of erythrocytosis in an English boy. Sequencing of the cytoplasmic region of the EpoR detected a de novo transition mutation of G to A at nucleotide 6002. This mutation resulted in the formation of a stop codon at amino acid 439 with the loss of 70 amino acids from the carboxy terminus. The mutation (G6002A) has arisen independently in a Finnish family and de novo in this English boy. Patients with unexplained erythrocytosis and low serum Epo levels should be investigated for EpoR mutations.

Collaboration


Dive into the Melanie J. Percy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terence Lappin

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Frank S. Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

T. R. J. Lappin

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Claire N. Harrison

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge