Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie M. Marketon is active.

Publication


Featured researches published by Melanie M. Marketon.


Microbiology and Molecular Biology Reviews | 2003

Quorum Sensing in Nitrogen-Fixing Rhizobia

Juan E. González; Melanie M. Marketon

SUMMARY Members of the rhizobia are distinguished for their ability to establish a nitrogen-fixing symbiosis with leguminous plants. While many details of this relationship remain a mystery, much effort has gone into elucidating the mechanisms governing bacterium-host recognition and the events leading to symbiosis. Several signal molecules, including plant-produced flavonoids and bacterially produced nodulation factors and exopolysaccharides, are known to function in the molecular conversation between the host and the symbiont. Work by several laboratories has shown that an additional mode of regulation, quorum sensing, intercedes in the signal exchange process and perhaps plays a major role in preparing and coordinating the nitrogen-fixing rhizobia during the establishment of the symbiosis. Rhizobium leguminosarum, for example, carries a multitiered quorum-sensing system that represents one of the most complex regulatory networks identified for this form of gene regulation. This review focuses on the recent stream of information regarding quorum sensing in the nitrogen-fixing rhizobia. Seminal work on the quorum-sensing systems of R. leguminosarum bv. viciae, R. etli, Rhizobium sp. strain NGR234, Sinorhizobium meliloti, and Bradyrhizobium japonicum is presented and discussed. The latest work shows that quorum sensing can be linked to various symbiotic phenomena including nodulation efficiency, symbiosome development, exopolysaccharide production, and nitrogen fixation, all of which are important for the establishment of a successful symbiosis. Many questions remain to be answered, but the knowledge obtained so far provides a firm foundation for future studies on the role of quorum-sensing mediated gene regulation in host-bacterium interactions.


Journal of Bacteriology | 2003

Quorum Sensing Controls Exopolysaccharide Production in Sinorhizobium meliloti

Melanie M. Marketon; Sarah A. Glenn; Anatol Eberhard; Juan E. González

Sinorhizobium meliloti is a soil bacterium capable of invading and establishing a symbiotic relationship with alfalfa plants. This invasion process requires the synthesis, by S. meliloti, of at least one of the two symbiotically important exopolysaccharides, succinoglycan and EPS II. We have previously shown that the sinRI locus of S. meliloti encodes a quorum-sensing system that plays a role in the symbiotic process. Here we show that the sinRI locus exerts one level of control through regulation of EPS II synthesis. Disruption of the autoinducer synthase gene, sinI, abolished EPS II production as well as the expression of several genes in the exp operon that are responsible for EPS II synthesis. This phenotype was complemented by the addition of acyl homoserine lactone (AHL) extracts from the wild-type strain but not from a sinI mutant, indicating that the sinRI-specified AHLs are required for exp gene expression. This was further confirmed by the observation that synthetic palmitoleyl homoserine lactone (C(16:1)-HL), one of the previously identified sinRI-specified AHLs, specifically restored exp gene expression. Most importantly, the absence of symbiotically active EPS II in a sinI mutant was confirmed in plant nodulation assays, emphasizing the role of quorum sensing in symbiosis.


Journal of Bacteriology | 2002

Identification of Two Quorum-Sensing Systems in Sinorhizobium meliloti

Melanie M. Marketon; Juan E. González

Sinorhizobium meliloti is a free-living soil bacterium which is capable of establishing a symbiotic relationship with the alfalfa plant (Medicago sativa). This symbiosis involves a network of bacterium-host signaling, as well as the potential for bacterium-bacterium communication, such as quorum sensing. In this study, we characterized the production of N-acyl homoserine lactones (AHLs) by two commonly used S. meliloti strains, AK631 and Rm1021. We found that AK631 produces at least nine different AHLs, while Rm1021 produces only a subset of these molecules. To address the difference in AHL patterns between the strains, we developed a novel screening method to identify the genes affecting AHL synthesis. With this screening method, chromosomal groEL (groELc) was shown to be required for synthesis of the AHLs that are unique to AK631 but not for synthesis of the AHLs that are made by both AK631 and Rm1021. We then used the screening procedure to identify a mutation in a gene homologous to traM of Agrobacterium tumefaciens, which was able to suppress the phenotype of the groELc mutation. A traR homolog was identified immediately upstream of traM, and we propose that its gene product requires a functional groELc for activity and is also responsible for inducing the synthesis of the AHLs that are unique to AK631. We show that the traR/traM locus is part of a quorum-sensing system unique to AK631 and propose that this locus is involved in regulating conjugal plasmid transfer. We also present evidence for the existence of a second quorum-sensing system, sinR/sinI, which is present in both AK631 and Rm1021.


Infection and Immunity | 2006

Immunogenicity and Protective Immunity against Bubonic Plague and Pneumonic Plague by Immunization of Mice with the Recombinant V10 Antigen, a Variant of LcrV

Kristin L. DeBord; Deborah M. Anderson; Melanie M. Marketon; Katie A. Overheim; R. William DePaolo; Nancy Ciletti; Bana Jabri; Olaf Schneewind

ABSTRACT In contrast to Yersinia pestis LcrV, the recombinant V10 (rV10) variant (lacking residues 271 to 300) does not suppress the release of proinflammatory cytokines by immune cells. Immunization with rV10 generates robust antibody responses that protect mice against bubonic plague and pneumonic plague, suggesting that rV10 may serve as an improved plague vaccine.


Molecular Microbiology | 2011

YopK regulates the Yersinia pestis type III secretion system from within host cells

Rebecca Dewoody; Peter M. Merritt; Andrew S. Houppert; Melanie M. Marketon

The pathogenic Yersinia species share a conserved type III secretion system, which delivers cytotoxic effectors known as Yops into target mammalian cells. In all three species, YopK (also called YopQ) plays an important role in regulating this process. In cell culture infections, yopK mutants inject higher levels of Yops, leading to increase cytotoxicity; however, in vivo the same mutants are highly attenuated. In this work, we investigate the mechanism behind this paradox. Using a β‐lactamase reporter assay to directly measure the effect of YopK on translocation, we demonstrated that YopK controls the rate of Yop injection. Furthermore, we find that YopK cannot regulate effector Yop translocation from within the bacterial cytosol. YopE is also injected into host cells and was previously shown to contribute to regulation of the injectisome. In this work we show that YopK and YopE work at different steps to regulate Yop injection, with YopK functioning independently of YopE. Finally, by expressing YopK within tissue culture cells, we confirm that YopK regulates translocation from inside the host cell, and we show that cells pre‐loaded with YopK are resistant to Yop injection. These results suggest a novel role for YopK in controlling the Yersinia type III secretion system.


Frontiers in Cellular and Infection Microbiology | 2013

Regulation of the Yersinia type III secretion system: traffic control.

Rebecca Dewoody; Peter M. Merritt; Melanie M. Marketon

Yersinia species, as well as many other Gram-negative pathogens, use a type III secretion system (T3SS) to translocate effector proteins from the bacterial cytoplasm to the host cytosol. This T3SS resembles a molecular syringe, with a needle-like shaft connected to a basal body structure, which spans the inner and outer bacterial membranes. The basal body of the injectisome shares a high degree of homology with the bacterial flagellum. Extending from the T3SS basal body is the needle, which is a polymer of a single protein, YscF. The distal end of the needle serves as a platform for the assembly of a tip complex composed of LcrV. Though never directly observed, prevailing models assume that LcrV assists in the insertion of the pore-forming proteins YopB and YopD into the host cell membrane. This completes a bridge between the bacterium and host cell to provide a continuous channel through which effectors are delivered. Significant effort has gone into understanding how the T3SS is assembled, how its substrates are recognized and how substrate delivery is controlled. Arguably the latter topic is the least understood; however, recent advances have provided new insight, and therefore, this review will focus primarily on summarizing the current state of knowledge regarding the control of substrate delivery by the T3SS. Specifically, we will discuss the roles of YopK, as well as YopN and YopE, which have long been linked to regulation of translocation. We also propose models whereby the YopK regulator communicates with the basal body of the T3SS to control translocation.


Journal of Bacteriology | 2005

Rejection of Impassable Substrates by Yersinia Type III Secretion Machines

Joseph A. Sorg; Nathan C. Miller; Melanie M. Marketon; Olaf Schneewind

Type III machines of pathogenic Yersinia spp. transport Yop proteins across the bacterial envelope into host cells. Translational fusions of yopE to the dihydrofolate reductase gene (dhfr) or the beta-galactosidase gene (lacZ) generate hybrid proteins that block type III injection of Yop proteins into host cells, consistent with the canonical view that impassable DHFR and LacZ hybrids jam secretion machines. Mutations in repressors of posttranscriptional gene regulation, Yersinia enterocolitica yscM1 and yscM2 as well as Yersinia pestis lcrQ, relieve the YopE-DHFR-imposed blockade and restore type III injection into host cells. Genetic suppression of the type III blockade does not, however, promote YopE-DHFR secretion. A model is proposed whereby rejection of YopE-DHFR from the secretion pathway inhibits type III gene expression.


Molecular Microbiology | 2013

YopK controls both rate and fidelity of Yop translocation

Rebecca Dewoody; Peter M. Merritt; Melanie M. Marketon

Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to intoxicate host cells. The injection of T3SS substrates must be carefully controlled, and dysregulation leads to altered infection kinetics and early clearance of Y. pestis. While the sequence of events leading up to cell contact and initiation of translocation has received much attention, the regulatory events that take place after effector translocation is less understood. Here we show that the regulator YopK is required to maintain fidelity of substrate specificity, in addition to controlling translocation rate. YopK was found to interact with YopD within targeted cells during Y. pestis infection, suggesting that YopKs regulatory mechanism involves a direct interaction with the translocation pore. In addition, we identified a single amino acid in YopK that is essential for translocation rate regulation but is dispensable for maintaining fidelity of translocation. Furthermore, we found that expression of YopK within host cells was sufficient to downregulate translocation rate, but it did not affect translocation fidelity. Together, our data support a model in which YopK is a bifunctional protein whose activities are genetically and spatially distinct such that fidelity control occurs within bacteria and rate control occurs within host cells.


Mbio | 2015

Inflammasome Activation in Response to the Yersinia Type III Secretion System Requires Hyperinjection of Translocon Proteins YopB and YopD

Erin E. Zwack; Annelise G. Snyder; Meghan A. Wynosky-Dolfi; Gordon Ruthel; Naomi H. Philip; Melanie M. Marketon; Matthew S. Francis; James B. Bliska; Igor E. Brodsky

ABSTRACT Type III secretion systems (T3SS) translocate effector proteins into target cells in order to disrupt or modulate host cell signaling pathways and establish replicative niches. However, recognition of T3SS activity by cytosolic pattern recognition receptors (PRRs) of the nucleotide-binding domain leucine rich repeat (NLR) family, either through detection of translocated products or membrane disruption, induces assembly of multiprotein complexes known as inflammasomes. Macrophages infected with Yersinia pseudotuberculosis strains lacking all known effectors or lacking the translocation regulator YopK induce rapid activation of both the canonical NLRP3 and noncanonical caspase-11 inflammasomes. While this inflammasome activation requires a functional T3SS, the precise signal that triggers inflammasome activation in response to Yersinia T3SS activity remains unclear. Effectorless strains of Yersinia as well as ΔyopK strains translocate elevated levels of T3SS substrates into infected cells. To dissect the contribution of pore formation and translocation to inflammasome activation, we took advantage of variants of YopD and LcrH that separate these functions of the T3SS. Notably, YopD variants that abrogated translocation but not pore-forming activity failed to induce inflammasome activation. Furthermore, analysis of individual infected cells revealed that inflammasome activation at the single-cell level correlated with translocated levels of YopB and YopD themselves. Intriguingly, LcrH mutants that are fully competent for effector translocation but produce and translocate lower levels of YopB and YopD also fail to trigger inflammasome activation. Our findings therefore suggest that hypertranslocation of YopD and YopB is linked to inflammasome activation in response to the Yersinia T3SS. IMPORTANCE The innate immune response is critical to effective clearance of pathogens. Recognition of conserved virulence structures and activities by innate immune receptors such as NLRs constitute one of the first steps in mounting the innate immune response. However, pathogens such as Yersinia actively evade or subvert components of host defense, such as inflammasomes. The T3SS-secreted protein YopK is an essential virulence factor that limits translocation of other Yops, thereby limiting T3SS-induced inflammasome activation. However, what triggers inflammasome activation in cells infected by YopK-deficient Yersinia is not clear. Our findings indicate that hypertranslocation of pore complex proteins promotes inflammasome activation and that YopK prevents inflammasome activation by the T3SS by limiting translocation of YopD and YopB themselves. The innate immune response is critical to effective clearance of pathogens. Recognition of conserved virulence structures and activities by innate immune receptors such as NLRs constitute one of the first steps in mounting the innate immune response. However, pathogens such as Yersinia actively evade or subvert components of host defense, such as inflammasomes. The T3SS-secreted protein YopK is an essential virulence factor that limits translocation of other Yops, thereby limiting T3SS-induced inflammasome activation. However, what triggers inflammasome activation in cells infected by YopK-deficient Yersinia is not clear. Our findings indicate that hypertranslocation of pore complex proteins promotes inflammasome activation and that YopK prevents inflammasome activation by the T3SS by limiting translocation of YopD and YopB themselves.


PLOS ONE | 2012

Identification of Chromosomal Genes in Yersinia pestis that Influence Type III Secretion and Delivery of Yops into Target Cells

Andrew S. Houppert; Elizabeth Kwiatkowski; Elizabeth M. Glass; Kristin L. DeBord; Peter M. Merritt; Olaf Schneewind; Melanie M. Marketon

Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague.

Collaboration


Dive into the Melanie M. Marketon's collaboration.

Top Co-Authors

Avatar

Peter M. Merritt

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Houppert

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Juan E. González

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge