Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mélanie Morel is active.

Publication


Featured researches published by Mélanie Morel.


Molecular Microbiology | 2003

Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum

Arnaud Javelle; Mélanie Morel; Blanca-Rosa Rodrı́guez-Pastrana; Bernard Botton; Bruno André; Anna Maria Marini; Annick Brun; Michel Chalot

External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structures of the ectomycorrhizal symbiosis. Here, we have cloned and characterized Hebeloma cylindrosporum AMT1, GLNA and GDHA genes, which encode a third ammonium transporter, a glutamine synthetase and an NADP‐dependent glutamate dehydrogenase respectively. Amt1 can fully restore the pseudohyphal growth defect of a Saccharomyces cerevisiae mep2 mutant, and this is the first evidence that a heterologous member of the Mep/Amt family complements this dimorphic change defect. Dixon plots of the inhibition of methylamine uptake by ammonium indicate that Amt1 has a much higher affinity than the two previously characterized members (Amt2 and Amt3) of the Amt/Mep family in H. cylindrosporum. We also identified the intracellular nitrogen pool(s) responsible for the modulation of expression of AMT1, AMT2, AMT3, GDHA and GLNA. In response to exogenously supplied ammonium or glutamine, AMT1, AMT2 and GDHA were downregulated and, therefore, these genes are subjected to nitrogen repression in H. cylindrosporum. Exogenously supplied nitrate failed to induce a downregulation of the five mRNAs after transfer of mycelia from a N‐starved condition. Our results demonstrate that glutamine is the main effector for AMT1 and AMT2 repression, whereas GDHA repression is controlled by intracellular ammonium, independently of the intracellular glutamine or glutamate concentration. Ammonium transport activity may be controlled by intracellular NH4+. AMT3 and GLNA are highly expressed but not highly regulated. A model for ammonium assimilation in H. cylindrosporum is presented.


Applied and Environmental Microbiology | 2005

Identification of Genes Differentially Expressed in Extraradical Mycelium and Ectomycorrhizal Roots during Paxillus involutus-Betula pendula Ectomycorrhizal Symbiosis

Mélanie Morel; Christophe Jacob; Annegret Kohler; Tomas Johansson; Francis L. Martin; Michel Chalot; Annick Brun

ABSTRACT The development of ectomycorrhizal symbiosis leads to drastic changes in gene expression in both partners. However, little is known about the spatial regulation of symbiosis-regulated genes. Using cDNA array profiling, we compared the levels of expression of fungal genes corresponding to approximately 1,200 expressed sequenced tags in the ectomycorrhizal root tips (ECM) and the connected extraradical mycelium (EM) for the Paxillus involutus-Betula pendula ectomycorrhizal association grown on peat in a microcosm system. Sixty-five unique genes were found to be differentially expressed in these two fungal compartments. In ECM, a gene coding for a putative phosphatidylserine decarboxylase (Psd) was up-regulated by 24-fold, while genes coding for urea (Dur3) and spermine (Tpo3) transporters were up-regulated 4.1- and 6.2-fold in EM. Moreover, urea was the major nitrogen compound found in EM by gas chromatography-mass spectrometry analysis. These results suggest that (i) there is a spatial difference in the patterns of fungal gene expression between ECM and EM, (ii) urea and polyamine transporters could facilitate the translocation of nitrogen compounds within the EM network, and (iii) fungal Psd may contribute to membrane remodeling during ectomycorrhiza formation.


Microbial Biotechnology | 2013

Xenomic networks variability and adaptation traits in wood decaying fungi

Mélanie Morel; Edgar Meux; Yann Mathieu; Anne Thuillier; Kamel Chibani; Luc Harvengt; Jean-Pierre Jacquot; Eric Gelhaye

Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood‐decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matter degradation. The members of the detoxification pathways constitute the xenome. Generally, they belong to multigenic families such as the cytochrome P450 monooxygenases and the glutathione transferases. Taking advantage of the recent release of numerous genomes of basidiomycetes, we show here that these multigenic families are extended and functionally related in wood‐decaying fungi. Furthermore, we postulate that these rapidly evolving multigenic families could reflect the adaptation of these fungi to the diversity of their substrate and provide keys to understand their ecology. This is of particular importance for white biotechnology, this xenome being a putative target for improving degradation properties of these fungi in biomass valorization purposes.


Cellular and Molecular Life Sciences | 2009

The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium

Mélanie Morel; Andrew A. Ngadin; Michel Droux; Jean-Pierre Jacquot; Eric Gelhaye

The recent release of several basidiomycete genome sequences allows an improvement of the classification of fungal glutathione S-transferases (GSTs). GSTs are well-known detoxification enzymes which can catalyze the conjugation of glutathione to non-polar compounds that contain an electrophilic carbon, nitrogen, or sulfur atom. Following this mechanism, they are able to metabolize drugs, pesticides, and many other xenobiotics and peroxides. A genomic and phylogenetic analysis of GST classes in various sequenced fungi—zygomycetes, ascomycetes, and basidiomycetes—revealed some particularities in GST distribution, in comparison with previous analyses with ascomycetes only. By focusing essentially on the wood-degrading basidiomycete Phanerochaete chrysosporium, this analysis highlighted a new fungal GST class named GTE, which is related to bacterial etherases, and two new subclasses of the omega class GSTs. Moreover, our phylogenetic analysis suggests a relationship between the saprophytic behavior of some fungi and the number and distribution of some GST isoforms within specific classes.


Molecular Microbiology | 2013

The escherichia coli SLC26 homologue YchM (DauA) is a C(4)-dicarboxylic acid transporter

Eleni Karinou; Emma L. R. Compton; Mélanie Morel; Arnaud Javelle

The SLC26/SulP (solute carrier/sulphate transporter) proteins are a ubiquitous superfamily of secondary anion transporters. Prior studies have focused almost exclusively on eukaryotic members and bacterial members are frequently classified as sulphate transporters based on their homology with SulP proteins from plants and fungi. In this study we have examined the function and physiological role of the Escherichia coli Slc26 homologue, YchM. We show that there is a clear YchM‐dependent growth defect when succinate is used as the sole carbon source. Using an in vivo succinate transport assay, we show that YchM is the sole aerobic succinate transporter active at acidic pH. We demonstrate that YchM can also transport other C4‐dicarboxylic acids and that its substrate specificity differs from the well‐characterized succinate transporter, DctA. Accordingly ychM was re‐designated dauA (dicarboxylic acid uptake system A). Finally, our data suggest that DauA is a protein with transport and regulation activities. This is the first report that a SLC26/SulP protein acts as a C4‐dicarboxylic acid transporter and an unexpected new function for a prokaryotic member of this transporter family.


Journal of Biological Chemistry | 2011

Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class.

Edgar Meux; Pascalita Prosper; Andrew A. Ngadin; Claude Didierjean; Mélanie Morel; Stéphane Dumarçay; Tiphaine Lamant; Jean-Pierre Jacquot; Frédérique Favier; Eric Gelhaye

The white rot fungus Phanerochaete chrysosporium, a saprophytic basidiomycete, possesses a large number of cytosolic glutathione transferases, eight of them showing similarity to the Omega class. PcGSTO1 (subclass I, the bacterial homologs of which were recently proposed, based on their enzymatic function, to constitute a new class of glutathione transferase named S-glutathionyl-(chloro)hydroquinone reductases) and PcGSTO3 (subclass II related to mammalian homologs) have been investigated in this study. Biochemical investigations demonstrate that both enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteinyl residue. This reaction leads to the formation of a disulfide bridge between the conserved cysteine and the removed glutathione from their substrate. The substrate specificity of each isoform differs. In particular PcGSTO1, in contrast to PcGSTO3, was found to catalyze deglutathionylation of S-glutathionyl-p-hydroquinone substrates. The three-dimensional structure of PcGSTO1 presented here confirms the hypothesis that it belongs not only to a new biological class but also to a new structural class that we propose to name GST xi. Indeed, it shows specific features, the most striking ones being a new dimerization mode and a catalytic site that is buried due to the presence of long loops and that contains the catalytic cysteine.


FEBS Letters | 2012

Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase omega class

Edgar Meux; Pascalita Prosper; Eiji Masai; Guillermo Mulliert; Stéphane Dumarçay; Mélanie Morel; Claude Didierjean; Eric Gelhaye; Frédérique Favier

SpLigG and SpLigG bind by X‐ray crystallography (View interaction).


Fungal Genetics and Biology | 2008

Characterization and regulation of PiDur3, a permease involved in the acquisition of urea by the ectomycorrhizal fungus Paxillus involutus.

Mélanie Morel; Christophe Jacob; Michael Fitz; Daniel Wipf; Michel Chalot; Annick Brun

Urea, which is known to be a source of nitrogen for the growth of many organisms, represents an important fertilizer in forest soils. Since most trees form symbiotic associations with ectomycorrhizal fungi, the capacities of these symbionts to take up and assimilate urea would determine the efficiency of urea nitrogen salvaging by plants. We showed that Paxillusinvolutus, an ectomycorrhizal basidiomycete, is capable of using urea as sole nitrogen source. We report the molecular characterization of an active urea transporter (PiDur3) isolated from this fungus. We demonstrated that the import of urea is a minor event on ammonium condition, since the expression of PiDUR3 is repressed by the high intracellular glutamine pool. Interestingly, on urea nutritive condition, the uptake of urea is rather mediated by the intracellular urea pool and particularly by urease efficiency.


New Phytologist | 2008

Comparison of the thiol‐dependent antioxidant systems in the ectomycorrhizal Laccaria bicolor and the saprotrophic Phanerochaete chrysosporium

Mélanie Morel; Annegret Kohler; Francis L. Martin; Eric Gelhaye; Nicolas Rouhier

Sequencing of the Laccaria bicolor and Phanerochaete chrysosporium genomes, together with the availability of many fungal genomes, allow careful comparison to be made of these two basidiomycetes, which possess a different way of life (either symbiotic or saprophytic), with other fungi. Central to the antioxidant systems are superoxide dismutases, catalases and thiol-dependent peroxidases (Tpx). The two reducing systems (thioredoxin (Trx) and glutathione/glutaredoxin (Grx)) are of particular importance against oxidative insults, both for detoxification, through the regeneration of thiol-peroxidases, and for developmental, physiological and signalling processes. Among those thiol-dependent antioxidant systems, special emphasis is given to the redoxin and methionine sulfoxide reductase (Msr) multigenic families. The genes coding for these enzymes were identified in the L. bicolor and P. chrysosporium genomes, were correctly annotated, and the gene content, organization and distribution were compared with other fungi. Expression of the Laccaria genes was also compiled from microarray data. A complete classification, based essentially on gene structure, on phylogenetic and sequence analysis, and on existing experimental data, was proposed. Comparison of the gene content of fungi from all phyla did not show huge differences for multigenic families in the reactive oxygen species (ROS) detoxification network, although some protein subgroups were absent in some fungi.


Journal of Biological Chemistry | 2012

Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties

Yann Mathieu; Pascalita Prosper; Marc Buée; Stéphane Dumarçay; Frédérique Favier; Eric Gelhaye; Philippe Gérardin; Luc Harvengt; Jean-Pierre Jacquot; Tiphaine Lamant; Edgar Meux; Sandrine Mathiot; Claude Didierjean; Mélanie Morel

Background: GSTs are detoxification enzymes poorly characterized in fungi. Results: GSTFuA1 possesses a unique three-dimensional structure and binds wood degradation compounds at or near the glutathione binding pocket. Conclusion: This GST is a new fungal isoform that we name GSTFuA1. Significance: GSTs with binding properties could be of great interest in various biotechnological applications. Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4′ in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.

Collaboration


Dive into the Mélanie Morel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Pierre Jacquot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Annick Brun

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Edgar Meux

University of Lorraine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. Ngadin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Jacob

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge