Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Neumann is active.

Publication


Featured researches published by Melanie Neumann.


PLOS Neglected Tropical Diseases | 2014

Evaluation of Antiviral Efficacy of Ribavirin, Arbidol, and T-705 (Favipiravir) in a Mouse Model for Crimean-Congo Hemorrhagic Fever

Lisa Oestereich; Toni Rieger; Melanie Neumann; Christian Bernreuther; Maria Lehmann; Susanne Krasemann; Stephanie Wurr; Petra Emmerich; Xavier de Lamballerie; Stephan Ölschläger; Stephan Günther

Background Mice lacking the type I interferon receptor (IFNAR−/− mice) reproduce relevant aspects of Crimean-Congo hemorrhagic fever (CCHF) in humans, including liver damage. We aimed at characterizing the liver pathology in CCHF virus-infected IFNAR−/− mice by immunohistochemistry and employed the model to evaluate the antiviral efficacy of ribavirin, arbidol, and T-705 against CCHF virus. Methodology/Principal Findings CCHF virus-infected IFNAR−/− mice died 2–6 days post infection with elevated aminotransferase levels and high virus titers in blood and organs. Main pathological alteration was acute hepatitis with extensive bridging necrosis, reactive hepatocyte proliferation, and mild to moderate inflammatory response with monocyte/macrophage activation. Virus-infected and apoptotic hepatocytes clustered in the necrotic areas. Ribavirin, arbidol, and T-705 suppressed virus replication in vitro by ≥3 log units (IC50 0.6–2.8 µg/ml; IC90 1.2–4.7 µg/ml). Ribavirin [100 mg/(kg×d)] did not increase the survival rate of IFNAR−/− mice, but prolonged the time to death (p<0.001) and reduced the aminotransferase levels and the virus titers. Arbidol [150 mg/(kg×d)] had no efficacy in vivo. Animals treated with T-705 at 1 h [15, 30, and 300 mg/(kg×d)] or up to 2 days [300 mg/(kg×d)] post infection survived, showed no signs of disease, and had no virus in blood and organs. Co-administration of ribavirin and T-705 yielded beneficial rather than adverse effects. Conclusions/Significance Activated hepatic macrophages and monocyte-derived cells may play a role in the proinflammatory cytokine response in CCHF. Clustering of infected hepatocytes in necrotic areas without marked inflammation suggests viral cytopathic effects. T-705 is highly potent against CCHF virus in vitro and in vivo. Its in vivo efficacy exceeds that of the current standard drug for treatment of CCHF, ribavirin.


PLOS Neglected Tropical Diseases | 2014

Dissemination of Orientia tsutsugamushi and Inflammatory Responses in a Murine Model of Scrub Typhus

Christian Keller; Matthias Hauptmann; Julia Kolbaum; Mohammad Gharaibeh; Melanie Neumann; Markus Glatzel; Bernhard Fleischer

Central aspects in the pathogenesis of scrub typhus, an infection caused by Orientia (O.) tsutsugamushi, have remained obscure. Its organ and cellular tropism are poorly understood. The purpose of this study was to analyze the kinetics of bacterial dissemination and associated inflammatory responses in infected tissues in an experimental scrub typhus mouse model, following infection with the human pathogenic strain Karp. We provide a thorough analysis of O. tsutsugamushi infection in inbred Balb/c mice using footpad inoculation, which is close to the natural way of infection. By a novel, highly sensitive qPCR targeting the multi copy traD genes, we quantitatively monitored the spread of O. tsutsugamushi Karp from the skin inoculation site via the regional lymph node to the internal target organs. The highest bacterial loads were measured in the lung. Using confocal imaging, we also detected O. tsutsugamushi at the single cell level in the lung and found a predominant macrophage rather than endothelial localization. Immunohistochemical analysis of infiltrates in lung and brain revealed differently composed lesions with specific localizations: iNOS-expressing macrophages were frequent in infiltrative parenchymal noduli, but uncommon in perivascular lesions within these organs. Quantitative analysis of the macrophage response by immunohistochemistry in liver, heart, lung and brain demonstrated an early onset of macrophage activation in the liver. Serum levels of interferon (IFN)-γ were increased during the acute infection, and we showed that IFN-γ contributed to iNOS-dependent bacterial growth control. Our data show that upon inoculation to the skin, O. tsutsugamushi spreads systemically to a large number of organs and gives rise to organ-specific inflammation patterns. The findings suggest an essential role for the lung in the pathogenesis of scrub typhus. The model will allow detailed studies on host-pathogen interaction and provide further insight into the pathogenesis of O. tsutsugamushi infection.


Neurobiology of Disease | 2015

Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice.

Aikaterini S. Papadopoulou; Lutgarde Serneels; Tilmann Achsel; Wim Mandemakers; Zsuzsanna Callaerts-Vegh; James Dooley; Pierre Lau; Torik A. Y. Ayoubi; Enrico Radaelli; Marco Spinazzi; Melanie Neumann; Sébastien S. Hébert; Asli Silahtaroglu; Adrian Liston; Rudi D'Hooge; Markus Glatzel; Bart De Strooper

miR-29 is expressed strongly in the brain and alterations in expression have been linked to several neurological disorders. To further explore the function of this miRNA in the brain, we generated miR-29a/b-1 knockout animals. Knockout mice develop a progressive disorder characterized by locomotor impairment and ataxia. The different members of the miR-29 family are strongly expressed in neurons of the olfactory bulb, the hippocampus and in the Purkinje cells of the cerebellum. Morphological analysis showed that Purkinje cells are smaller and display less dendritic arborisation compared to their wildtype littermates. In addition, a decreased number of parallel fibers form synapses on the Purkinje cells. We identified several mRNAs significantly up-regulated in the absence of the miR-29a/b-1 cluster. At the protein level, however, the voltage-gated potassium channel Kcnc3 (Kv3.3) was significantly up-regulated in the cerebella of the miR-29a/b knockout mice. Dysregulation of KCNC3 expression may contribute to the ataxic phenotype.


PLOS ONE | 2013

Deficiency in Serine Protease Inhibitor Neuroserpin Exacerbates Ischemic Brain Injury by Increased Postischemic Inflammation

Mathias Gelderblom; Melanie Neumann; Peter Ludewig; Christian Bernreuther; Susanne Krasemann; Priyadharshini Arunachalam; Christian Gerloff; Markus Glatzel; Tim Magnus

The only approved pharmacological treatment for ischemic stroke is intravenous administration of plasminogen activator (tPA) to re-canalize the occluded cerebral vessel. Not only reperfusion but also tPA itself can induce an inflammatory response. Microglia are the innate immune cells of the central nervous system and the first immune cells to become activated in stroke. Neuroserpin, an endogenous inhibitor of tPA, is up-regulated following cerebral ischemia. To examine neuroserpin-dependent mechanisms of neuroprotection in stroke, we studied neuroserpin deficient (Ns−/−) mice in an animal model of temporal focal ischemic stroke. Infarct size and neurological outcome were worse in neuroserpin deficient mice even though the fibrinolytic activity in the ischemic brain was increased. The increased infarct size was paralleled by a selective increase in proinflammatory microglia activation in Ns−/− mice. Our results show excessive microglial activation in Ns−/− mice mediated by an increased activity of tPA. This activation results in a worse outcome further underscoring the potential detrimental proinflammatory effects of tPA.


PLOS ONE | 2010

Preclinical deposition of pathological prion protein in muscle of experimentally infected primates.

Susanne Krasemann; Melanie Neumann; Markus Geissen; Walter Bodemer; Franz-Josef Kaup; Walter Schulz-Schaeffer; Nathalie Morel; Adriano Aguzzi; Markus Glatzel

Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and animals. A central step in disease progression is the accumulation of a misfolded form (PrPSc) of the host encoded prion protein (PrPC) in neuronal and non-neuronal tissues. The involvement of peripheral tissues in preclinical states increases the risk of accidental transmission. On the other hand, detection of PrPSc in non-neuronal easy-accessible compartments such as muscle may offer a novel diagnostic tool. Primate models have proven invaluable to investigate prion diseases. We have studied the deposition of PrPSc in muscle and central nervous system of rhesus monkeys challenged with sporadic Creutzfeldt-Jakob disease (sCJD), variant CJD (vCJD) and bovine spongiform encephalopathy (BSE) in preclinical and clinical stage using biochemical and morphological methods. Here, we show the preclinical presence of PrPSc in muscle and central nervous system of rhesus monkeys experimentally infected with vCJD.


Journal of Biological Chemistry | 2015

Biological Relevance and Therapeutic Potential of the Hypusine Modification System.

Nora Pällmann; Melanie Braig; Henning Sievert; Michael Preukschas; Irm Hermans-Borgmeyer; Michaela Schweizer; Claus Henning Nagel; Melanie Neumann; Peter Wild; Eugenia Haralambieva; Christian Hagel; Carsten Bokemeyer; Joachim Hauber; Stefan Balabanov

Background: Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) represents a conserved post-translational modification that regulates translation. Results: Deletion of hypusine modification enzymes exerts strong phenotypes. eIF-5A2-deleted animals are viable and fertile. Conclusion: Both enzymatic steps of hypusine modification are essential for mammalian homeostasis, whereas the cancer-related isoform eIF-5A2 is dispensable. Significance: eIF-5A2 might represent a safe therapeutic target. Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is emerging as a crucial regulator in cancer, infections, and inflammation. Although its contribution in translational regulation of proline repeat-rich proteins has been sufficiently demonstrated, its biological role in higher eukaryotes remains poorly understood. To establish the hypusine modification system as a novel platform for therapeutic strategies, we aimed to investigate its functional relevance in mammals by generating and using a range of new knock-out mouse models for the hypusine-modifying enzymes deoxyhypusine synthase and deoxyhypusine hydroxylase as well as for the cancer-related isoform eIF-5A2. We discovered that homozygous depletion of deoxyhypusine synthase and/or deoxyhypusine hydroxylase causes lethality in adult mice with different penetrance compared with haploinsufficiency. Network-based bioinformatic analysis of proline repeat-rich proteins, which are putative eIF-5A targets, revealed that these proteins are organized in highly connected protein-protein interaction networks. Hypusine-dependent translational control of essential proteins (hubs) and protein complexes inside these networks might explain the lethal phenotype observed after deletion of hypusine-modifying enzymes. Remarkably, our results also demonstrate that the cancer-associated isoform eIF-5A2 is dispensable for normal development and viability. Together, our results provide the first genetic evidence that the hypusine modification in eIF-5A is crucial for homeostasis in mammals. Moreover, these findings highlight functional diversity of the hypusine system compared with lower eukaryotes and indicate eIF-5A2 as a valuable and safe target for therapeutic intervention in cancer.


Journal of General Virology | 2013

Protease-sensitive prion species in neoplastic spleens of prion-infected mice with uncoupling of PrP(Sc) and prion infectivity.

Susanne Krasemann; Melanie Neumann; Beata Szalay; Carol Stocking; Markus Glatzel

Prion diseases are fatal neurodegenerative disorders. An important step in disease pathophysiology is the conversion of cellular prion protein (PrP(C)) to disease-associated misfolded conformers (PrP(Sc)). These misfolded PrP variants are a common component of prion infectivity and are detectable in diseased brain and lymphoreticular organs such as spleen. In the latter, PrP(Sc) is thought to replicate mainly in follicular dendritic cells within spleen follicles. Although the presence of PrP(Sc) is a hallmark for prion disease and serves as a main diagnostic criterion, in certain instances the amount of PrP(Sc) does not correlate well with neurotoxicity or prion infectivity. Therefore, it has been proposed that prions might be a mixture of different conformers and aggregates with differing properties. This study investigated the impact of disruption of spleen architecture by neoplasia on the abundance of different PrP species in spleens of prion-infected mice. Although follicular integrity was completely disturbed, titres of prion infectivity in neoplastic spleens were not significantly altered, yet no protease-resistant PrP(Sc) was detectable. Instead, unique protease-sensitive prion species could be detected in neoplastic spleens. These results indicate the dissociation of PrP(Sc) and prion infectivity and showed the presence of non-PrP(Sc) PrP species in spleen with divergent biochemical properties that become apparent after tissue architecture disruption.


Acta Neuropathologica | 2012

Persistent retroviral infection with MoMuLV influences neuropathological signature and phenotype of prion disease

Susanne Krasemann; Melanie Neumann; Jan-Paul Luepke; Juliane Grashorn; Steffanie Wurr; Carol Stocking; Markus Glatzel

A fundamental step in pathophysiology of prion diseases is the conversion of the host encoded prion protein (PrPC) into a misfolded isoform (PrPSc) that accumulates mainly in neuronal but also non-neuronal tissues. Prion diseases are transmissible within and between species. In a subset of prion diseases, peripheral prion uptake and subsequent transport to the central nervous system are key to disease initiation. The involvement of retroviruses in this process has been postulated based on the findings that retroviral infections enhance the spread of prion infectivity and PrPSc from cell to cell in vitro. To study whether retroviral infection influences the phenotype of prion disease or the spread of prion infectivity and PrPSc in vivo, we developed a murine model with persistent Moloney murine leukemia retrovirus (MoMuLV) infection with and without additional prion infection. We investigated the pathophysiology of prion disease in MoMuLV and prion-infected mice, monitoring temporal kinetics of PrPSc spread and prion infectivity, as well as clinical presentation. Unexpectedly, infection of MoMuLV challenged mice with prions did not change incubation time to clinical prion disease. However, clinical presentation of prion disease was altered in mice infected with both pathogens. This was paralleled by remarkably enhanced astrogliosis and pathognomonic astrocyte morphology in the brain of these mice. Therefore, we conclude that persistent viral infection might act as a disease modifier in prion disease.


Emerging Infectious Diseases | 2013

BSE-associated Prion-Amyloid Cardiomyopathy in Primates

Susanne Krasemann; Giulia Mearini; Elisabeth Krämer; Katja Wagenführ; Walter Schulz-Schaeffer; Melanie Neumann; Walter Bodemer; Franz-Josef Kaup; Michael Beekes; Lucie Carrier; Adriano Aguzzi; Markus Glatzel

Prion amyloidosis occurred in the heart of 1 of 3 macaques intraperitoneally inoculated with bovine spongiform encephalopathy prions. This macaque had a remarkably long duration of disease and signs of cardiac distress. Variant Creutzfeldt-Jakob disease, caused by transmission of bovine spongiform encephalopathy to humans, may manifest with cardiac symptoms from prion-amyloid cardiomyopathy.


Acta neuropathologica communications | 2013

Myositis facilitates preclinical accumulation of pathological prion protein in muscle

Melanie Neumann; Susanne Krasemann; Katharina Schröck; Karin Steinbach; Markus Glatzel

BackgroundIn human and animal prion diseases, pathological prion protein, PrPSc, as well as prion infectivity is mainly found in the central nervous system, but also in lymphoid organs and muscle. Pathophysiology of prion colonization of lymphoid organs has been studied intensively, yet how myositis influences prion accumulation in muscle is unknown.ResultWe have investigated the influence of myositis on PrPSc accumulation and prion infectivity in two distinct mouse models of experimental autoimmune myositis. Furthermore, we have addressed the relevance of PrPC expression in the lymphoreticular system in myositis by generating bone marrow chimeras.Here we show that myositis positively influences muscular PrPSc accumulation at preclinical time points and that PrPC-expression in the lymphoid system is critical for this. In muscle, PrPSc and prion infectivity are uncoupled with detectable PrPSc but no prion infectivity at preclinical time points. Muscle has an intrinsically high ability to clear PrPSc once myositis has ceased, possibly involving autophagy.ConclusionOur findings provide new insights into the pathophysiology of prion colonization in muscle pointing out that myositis leads to enhanced prion colonization of muscle in subclinical prion disease.

Collaboration


Dive into the Melanie Neumann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Stocking

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge