Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mélanie Otténio is active.

Publication


Featured researches published by Mélanie Otténio.


Journal of The Mechanical Behavior of Biomedical Materials | 2012

Characterization of the anisotropic mechanical properties of excised human skin

Aisling Ní Annaidh; Karine Bruyère; Michael D. Gilchrist; Mélanie Otténio

The mechanical properties of skin are important for a number of applications including surgery, dermatology, impact biomechanics and forensic science. In this study, we have investigated the influence of location and orientation on the deformation characteristics of 56 samples of excised human skin. Uniaxial tensile tests were carried out at a strain rate of 0.012 s(-1) on skin from the back. Digital Image Correlation was used for 2D strain measurement and a histological examination of the dermis was also performed. The mean ultimate tensile strength (UTS) was 21.6±8.4 MPa, the mean failure strain 54%±17%, the mean initial slope 1.18±0.88 MPa, the mean elastic modulus 83.3±34.9 MPa and the mean strain energy was 3.6±1.6 MJ/m(3). A multivariate analysis of variance has shown that these mechanical properties of skin are dependent upon the orientation of the Langer lines (P<0.0001-P=0.046). The location of specimens on the back was also found to have a significant effect on the UTS (P=0.0002), the elastic modulus (P=0.001) and the strain energy (P=0.0052). The histological investigation concluded that there is a definite correlation between the orientation of the Langer lines and the preferred orientation of collagen fibres in the dermis (P<0.001). The data obtained in this study will provide essential information for those wishing to model the skin using a structural constitutive model.


Journal of Elasticity | 2007

Incremental Magnetoelastic Deformations, with Application to Surface Instability

Mélanie Otténio; Ray W. Ogden

In this paper the equations governing the deformations of infinitesimal (incremental) disturbances superimposed on finite static deformation fields involving magnetic and elastic interactions are presented. The coupling between the equations of mechanical equilibrium and Maxwell’s equations complicates the incremental formulation and particular attention is therefore paid to the derivation of the incremental equations, of the tensors of magnetoelastic moduli and of the incremental boundary conditions at a magnetoelastic/vacuum interface. The problem of surface stability for a solid half-space under plane strain with a magnetic field normal to its surface is used to illustrate the general results. The analysis involved leads to the simultaneous resolution of a bicubic and vanishing of a 7×7 determinant. In order to provide specific demonstration of the effect of the magnetic field, the material model is specialized to that of a “magnetoelastic Mooney–Rivlin solid”. Depending on the magnitudes of the magnetic field and the magnetoelastic coupling parameters, this shows that the half-space may become either more stable or less stable than in the absence of a magnetic field.


Journal of The Mechanical Behavior of Biomedical Materials | 2015

Strain rate and anisotropy effects on the tensile failure characteristics of human skin.

Mélanie Otténio; Doris Tran; Aisling Ní Annaidh; Michael D. Gilchrist; Karine Bruyère

The anisotropic failure characteristics of human skin are relatively unknown at strain rates typical in impact biomechanics. This study reports the results of an experimental protocol to quantify the effect of dynamic strain rates and the effect of sample orientation with respect to the Langer lines. Uniaxial tensile tests were carried out at three strain rates (0.06s(-1), 53s(-1), and 167s(-1)) on 33 test samples excised from the back of a fresh cadaver. The mean ultimate tensile stress, mean elastic modulus and mean strain energy increased with increasing strain rates. While the stretch ratio at ultimate tensile stress was not affected by the strain rate, it was influenced by the orientation of the samples (parallel and perpendicular to the Langer lines. The orientation of the sample also had a strong influence on the ultimate tensile stress, with a mean value of 28.0 ± 5.7 MPa for parallel samples, and 15.6 ± 5.2 MPa for perpendicular samples, and on the elastic modulus, with corresponding mean values of 160.8 MPa ± 53.2 MPa and 70.6 MPa ± 59.5 MPa. The study also pointed out the difficulties in controlling the effective applied strain rate in dynamic characterization of soft tissue and the resulting abnormal stress-strain relationships. Finally, data collected in this study can be used to develop constitutive models where high loading rates are of primary interest.


Journal of Biomechanics | 2013

Mechanical response of animal abdominal walls in vitro: Evaluation of the influence of a hernia defect and a repair with a mesh implanted intraperitoneally

Florence Podwojewski; Mélanie Otténio; Philippe Beillas; Gaëtan Guérin; Frédéric Turquier; David Mitton

Better mechanical knowledge of the abdominal wall is requested to further develop and validate numerical models. The aim of this study was to characterize the passive behaviour of the abdominal wall under three configurations: intact, after creating a defect simulating an incisional hernia, and after a repair with a mesh implanted intraperitonally. For each configuration, controlled boundary conditions were applied (air pressure and then contact loading) to the abdominal wall. 3D local strain fields were determined by digital image correlation. Local strains measured on the internal and external surfaces of the intact abdominal wall showed different patterns. The air pressure and the force applied to the abdominal wall during contact loading were measured and used to determine stiffness. The presence of a defect resulted in a significant decrease of the global stiffness compared to the intact abdominal wall (about 25%). In addition, the presence of the mesh enabled to restore the stiffness to values that were not significantly different from those of the intact wall. These results suggest that intraperitoneal mesh seems to restore the global biomechanics of the abdomen.


International Journal of Non-linear Mechanics | 2007

Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid

Mélanie Otténio; Ray W. Ogden

We analyse the influence of pre-stress on the propagation of interfacial waves along the boundary of an incompressible hyperelastic half-space that is in contact with a viscous fluid extending to infinity in the adjoining half-space. One aim is to derive rigorously the incremental boundary conditions at the interface; this derivation is delicate because of the interplay between the Lagrangian and the Eulerian descriptions but is crucial for numerous problems concerned with the interaction between a compliant wall and a viscous fluid. A second aim of this work is to model the ultrasonic waves used in the assessment of aortic aneurysms, and here we find that for this purpose the half-space idealization is justified at high frequencies. A third goal is to shed some light on the stability behaviour in compression of the solid half-space, as compared with the situation in the absence of fluid; we find that the usual technique of seeking standing waves solutions is not appropriate when the half-space is in contact with a fluid; in fact, a correct analysis reveals that the presence of a viscous fluid makes a compressed neo-Hookean half-space slightly more stable. For a wave travelling in a direction of principal strain, we obtain results for the case of a general (incompressible isotropic) strain-energy function. For a wave travelling parallel to the interface and in an arbitrary direction in a plane of principal strain, we specialize the analysis to the neo-Hookean strain-energy function.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Mechanical response of human abdominal walls ex vivo: Effect of an incisional hernia and a mesh repair.

Florence Podwojewski; Mélanie Otténio; Philippe Beillas; Gaëtan Guérin; Frédéric Turquier; David Mitton

The design of meshes for the treatment of incisional hernias could benefit from better knowledge of the mechanical response of the abdominal wall and how this response is affected by the implant. The aim of this study was to characterise the mechanical behaviour of the human abdominal wall. Abdominal walls were tested ex vivo in three states: intact, after creation of a defect simulating an incisional hernia, and after reparation with a mesh implanted intraperitonally. For each state, the abdominal wall was subjected to air pressure loading. Local strain fields were determined using digital image correlation techniques. The strain fields on the internal and external surfaces of the abdominal wall exhibited different patterns. The strain patterns on the internal surface appeared to be related to the underlying anatomy of the abdominal wall. Higher strains were observed along the linea alba than along the perpendicular direction. Under pressure loading, the created incision increased the strain of the abdominal wall compared to the intact state in 5 cases of a total 6. In addition, the mesh repair decreased the strains of the abdominal wall compared to the incised state in 4 cases of 6. These results suggest that the intraperitoneal mesh restores at least partially the mechanical behaviour of the wall and provides quantification of the effects on the strains in various regions.


International Journal of Engineering Science | 2005

Non-principal surface waves in deformed incompressible materials

Mélanie Otténio; Alexey V. Pichugin; G. A. Rogerson

Abstract The Stroh formalism is applied to the analysis of infinitesimal surface wave propagation in a statically, finitely and homogeneously deformed isotropic half-space. The free surface is assumed to coincide with one of the principal planes of the primary strain, but a propagating surface wave is not restricted to a principal direction. A variant of Taziev’s technique [R.M. Taziev, Dispersion relation for acoustic waves in an anisotropic elastic half-space, Sov. Phys. Acoust. 35 (1989) 535–538] is used to obtain an explicit expression of the secular equation for the surface wave speed, which possesses no restrictions on the form of the strain energy function. Albeit powerful, this method does not produce a unique solution and additional checks are necessary. However, a class of materials is presented for which an exact secular equation for the surface wave speed can be formulated. This class includes the well-known Mooney–Rivlin model. The main results are illustrated with several numerical examples.


Annals of Biomedical Engineering | 2012

Automated Estimation of Collagen Fibre Dispersion in the Dermis and its Contribution to the Anisotropic Behaviour of Skin

Aisling Ní Annaidh; Karine Bruyère; Michael D. Gilchrist; Corrado Maurini; Mélanie Otténio; Giuseppe Saccomandi


2012 IRCOBI ConferenceInternational Research Council on Biomechanics of Injury (IRCOBI)Collision Research & Analysis, Inc.JP Research, Inc.Nissan Motor Co Ltd, JapanScience Foundation IrelandToyota | 2012

Dynamic Tensile Properties of Human Skin

A J Gallagher; A Ni Anniadh; Karine Bruyère; Mélanie Otténio; H Xie; Michael D. Gilchrist


Journal of Biomechanics | 2012

MECHANICAL RESPONSE OF PORCINE AND HUMAN ABDOMINAL WALL: INTACT AND INCISED

Florence Podwojewski; Mélanie Otténio; Philippe Beillas; Gaëtan Guérin; Frédéric Turquier; David Mitton

Collaboration


Dive into the Mélanie Otténio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge