Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie Palomares is active.

Publication


Featured researches published by Melanie Palomares.


Vision Research | 2002

The role of spatial frequency channels in letter identification

Najib J. Majaj; Denis G. Pelli; Peri Kurshan; Melanie Palomares

How we see is today explained by physical optics and retinal transduction, followed by feature detection, in the cortex, by a bank of parallel independent spatial-frequency-selective channels. It is assumed that the observer uses whichever channels are best for the task at hand. Our current results demand a revision of this framework: Observers are not free to choose which channels they use. We used critical-band masking to characterize the channels mediating identification of broadband signals: letters in a wide range of fonts (Sloan, Bookman, Künstler, Yung), alphabets (Roman and Chinese), and sizes (0.1-55 degrees ). We also tested sinewave and squarewave gratings. Masking always revealed a single channel, 1.6+/-0.7 octaves wide, with a center frequency that depends on letter size and alphabet. We define an alphabets stroke frequency as the average number of lines crossed by a slice through a letter, divided by the letter width. For sharp-edged (i.e. broadband) signals, we find that stroke frequency completely determines channel frequency, independent of alphabet, font, and size. Moreover, even though observers have multiple channels, they always use the same channel for the same signals, even after hundreds of trials, regardless of whether the noise is low-pass, high-pass, or all-pass. This shows that observers identify letters through a single channel that is selected bottom-up, by the signal, not top-down by the observer. We thought shape would be processed similarly at all sizes. Bandlimited signals conform more to this expectation than do broadband signals. Here, we characterize processing by channel frequency. For sinewave gratings, as expected, channel frequency equals sinewave frequency f(channel)=f. For bandpass-filtered letters, channel frequency is proportional to center frequency f(channel) proportional, variantf(center) (log-log slope 1) when size is varied and the band (c/letter) is fixed, but channel frequency is less than proportional to center frequency f(channel) proportional, variantf(center)(2/3) (log-log slope 2/3) when the band is varied and size is fixed. Finally, our main result, for sharp-edged (i.e. broadband) letters and squarewaves, channel frequency depends solely on stroke frequency, f(channel)/10c/deg=(2/3), with a log-log slope of 2/3. Thus, large letters (and coarse squarewaves) are identified by their edges; small letters (and fine squarewaves) are identified by their gross strokes.


Visual Cognition | 2008

The role of attention in subitizing: Is the magical number 1?

Howard E. Egeth; Carly J. Leonard; Melanie Palomares

Subitizing, the fast and accurate enumeration of up to about 3 or 4 objects, has often been thought to be dependent on limited-capacity preattentive mechanisms. We used an attentional blink paradigm to investigate the extent to which subitizing requires attentional resources. On each trial, subjects identified a target letter in an RSVP stream and then enumerated dots presented in the stream that were either simultaneous with the target letter or followed it by up to 400 ms. For numerosities from 2 to 9, evidence of an attentional blink was observed; only enumeration of 0 or 1 elements was independent of lag. Thus, even enumeration of 2–3 objects, which is within the traditional subitizing range, appears to require attentional resources. The relation of this work to studies on the attentional requirements of detecting a unique item among distractors, a supposedly preattentive discrimination, is briefly discussed.


Cognitive Neuropsychology | 2009

Grouping in object recognition: The role of a Gestalt law in letter identification

Denis G. Pelli; Najib J. Majaj; Noah Raizman; Christopher J. Christian; Edward Kim; Melanie Palomares

The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws “prescribe for us what we are to recognize ‘as one thing’” (Köhler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favourable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and “snakes in the grass” is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, “wiggle”, to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation and may be the first confirmation of the original Gestalt claim that object recognition involves grouping.


Journal of Cognitive Neuroscience | 2010

Connecting the dots: How local structure affects global integration in infants

Melanie Palomares; Mark W. Pettet; Vladimir Y. Vildavski; Chuan Hou; Anthony M. Norcia

Glass patterns are moirés created from a sparse random-dot field paired with its spatially shifted copy. Because discrimination of these patterns is not based on local features, they have been used extensively to study global integration processes. Here, we investigated whether 4- to 5.5-month-old infants are sensitive to the global structure of Glass patterns by measuring visual-evoked potentials. Although we found strong responses to the appearance of the constituent dots, we found sensitivity to the global structure of the Glass patterns in the infants only over a very limited range of spatial separation. In contrast, we observed robust responses in the infants when we connected the dot pairs of the Glass pattern with lines. Moreover, both infants and adults showed differential responses to exchanges between line patterns portraying different global structures. A control study varying luminance contrast in adults suggests that infant sensitivity to global structure is not primarily limited by reduced element visibility. Together our results suggest that the insensitivity to structure in conventional Glass patterns is due to inefficiencies in extracting the local orientation cues generated by the dot pairs. Once the local orientations are made unambiguous or when the interpolation span is small, infants can integrate these signals over the image.


PLOS ONE | 2011

The effect of viewing eccentricity on enumeration.

Melanie Palomares; Paul R. Smith; Carole Holley Pitts; Breana Carter

Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities.


Journal of Vision | 2012

Distinct effects of attention on the neural responses to form and motion processing: A SSVEP source-imaging study

Melanie Palomares; Justin Ales; Alex R. Wade; Benoit Cottereau; Anthony M. Norcia

We measured neural responses to local and global aspects of form and motion stimuli using frequency-tagged, steady-state visual evoked potentials (SSVEPs) combined with magnetic resonance imaging (MRI) data. Random dot stimuli were used to portray either dynamic Glass patterns (Glass, 1969) or coherent motion displays. SSVEPs were used to estimate neural activity in a set of fMRI-defined visual areas in each subject. To compare activity associated with local versus global processing, we analyzed two frequency components of the SSVEP in each visual area: the high temporal frequency at which the local dots were updated (30 Hz) and the much lower frequency corresponding to updates in the global structure (0.83 Hz). Local and global responses were evaluated in the context of two different behavioral tasks--subjects had to either direct their attention toward or away from the global coherence of the stimuli. The data show that the effect of attention on global and local responses is both stimulus and visual area dependent. When attention was directed away from stimulus coherence, both local and global responses were higher in the coherent motion than Glass pattern condition. Directing attention to coherence in Glass patterns enhanced global activity in areas LOC, hMT+, V4, V3a, and V1, while attention to global motion modulated responses by a smaller amount in a smaller set of areas: V4, hMT+, and LOC. In contrast, directing attention towards stimulus coherence weakly increased local responses to both coherent motion and Glass patterns. These results suggest that visual attention differentially modulates the activity of early visual areas at both local and global levels of structural encoding.


Vision Research | 2012

The relationship of global form and motion detection to reading fluency.

Julia A. Englund; Melanie Palomares

Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children.


Brain and Cognition | 2009

Orientation perception in Williams Syndrome: Discrimination and integration

Melanie Palomares; Barbara Landau; Howard E. Egeth

Williams Syndrome (WS) is a rare neurodevelopmental disorder, which stems from a genetic deletion on chromosome 7 and causes a profound weakness in visuospatial cognition. Our current study explores how orientation perception may contribute to the visuospatial deficits in WS. In Experiment 1, we found that WS individuals and normal 3-4 year olds had similar orientation discrimination thresholds and had similar prevalence of mirror-reversal errors for diagonal targets (+/-45 deg). In Experiment 2, we asked whether this immaturity in orientation discrimination would also be reflected in a task requiring integration of oriented elements. We found that sensitivities of WS individuals for detecting orientation-defined contours were higher than sensitivities of normal 3-4 year olds, and were not significantly different from sensitivities of normal adults. Together, these results suggest that orientation discrimination and orientation integration have different maturational trajectories in normal development and different susceptibilities to damage in WS. These may reflect largely separate visuospatial mechanisms.


Research in Developmental Disabilities | 2011

Patterns and trajectories in Williams Syndrome: the case of visual orientation discrimination.

Melanie Palomares; Julia A. Englund; Stephanie Ahlers

Williams Syndrome (WS) is a developmental disorder typified by deficits in visuospatial cognition. To understand the nature of this deficit, we characterized how people with WS perceive visual orientation, a fundamental ability related to object identification. We compared WS participants to typically developing children (3-6 years of age) and typical adults in an orientation discrimination task with four stimulus types (small circular, large circular, collinear elongated and parallel elongated gratings). We measured orientation discrimination thresholds and the proportion of orthogonal errors (i.e., mirror-image reversal errors). We evaluated how these metrics (1) are modulated by stimulus condition, and (2) vary with chronological or mental age. We found that orientation perception in WS is comparable to that of typically developing children. Orientation discrimination thresholds were better for elongated gratings than circular gratings across all participant groups. For large circular gratings, the proportion of orthogonal errors was disproportionately greater in WS participants and typically developing 3-6 year old children than in typical adults. Moreover, we found that the ability to judge orientation in WS improves with increasing mental age, but not chronological age. These results suggest that orientation discrimination in WS is developmentally arrested, as opposed to abnormal or delayed.


Perception | 2009

Normal Susceptibility to Visual Illusions in Abnormal Development: Evidence from Williams Syndrome

Melanie Palomares; Chinyere Ogbonna; Barbara Landau; Howard E. Egeth

The perception of visual illusions is a powerful diagnostic of implicit integration of global information. Many illusions occur when length, size, orientation, or luminance are misjudged because neighboring visuospatial information cannot be ignored. We asked if people with Williams syndrome (WS), a rare genetic disorder that results in severely impaired global visuospatial construction abilities, are also susceptible to the context of visual illusions. Remarkably, we found that illusions influenced WS individuals to the same degree as normal adults, although size discrimination was somewhat impaired in WS. Our results are evidence that illusions are a consequence of the brains bias to implicitly integrate visual information, even in a population known to have difficulty in explicitly representing spatial relationships among objects. Moreover, these results suggest that implicit and non-implicit integration of spatial information have different vulnerabilities in abnormal development.

Collaboration


Dive into the Melanie Palomares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Landau

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

C. Holley Pitts

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuan Hou

Smith-Kettlewell Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia A. Englund

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Najib J. Majaj

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar

Breana Carter

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge