Melanie Ziman
Edith Cowan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melanie Ziman.
Histology and Histopathology | 2005
Karolina Michalczyk; Melanie Ziman
Nestin is an intermediate filament protein expressed in dividing cells during the early stages of development in the CNS, PNS and in myogenic and other tissues. Upon differentiation, nestin becomes downregulated and is replaced by tissue-specific intermediate filament proteins. Interestingly, nestin expression is reinduced in the adult during pathological situations, such as the formation of the glial scar after CNS injury and during regeneration of injured muscle tissue. Although it is utilised as a marker of proliferating and migrating cells very little is known about its functions or regulation. In depth studies on the distribution and expression of nestin in mitotically active cells indicate a complex role in regulation of the assembly and disassembly of intermediate filaments which together with other structural proteins, participate in remodeling of the cell. The role of nestin in dynamic cells, particularly structural organisation of the cell, appears strictly regulated by phosphorylation, especially its integration into heterogeneous intermediate filaments together with vimentin or alpha-internexin.
Cancer Letters | 2009
Elizabeth Charytonowicz; Carlos Cordon-Cardo; Igor Matushansky; Melanie Ziman
Alveolar rhabdomyosarcoma (ARMS) is a pediatric sarcoma that typically occurs in older children predominantly arising in the trunk and extremities, and exhibits a worse prognosis than other types of rhabdomyosarcomas. Most ARMS tumors have t(2; 13) or t(1; 13) translocations, involving PAX3-FKHR and PAX7-FKHR fusion genes, respectively. These genetic events result in a molecular gain of function of the fusion protein which is proposed, in a yet unspecified mechanism, to perturb the differentiation of muscle progenitor cells. While a significant amount of work has been done characterizing PAX-FKHR fusion proteins in ARMS and elucidating their involvement in the sarcomagenic process, their relationship to normal skeletal muscle differentiation remains unestablished. In this manuscript we will explore a potential role for mesenchymal stem cells as the cell of origin of ARMS, and the possibility that PAX-FKHR fusion genes may commit these cells to a myogenic lineage while inhibiting terminal differentiation, thus contributing to ARMS formation. We will also review the structure and function of alternate transcripts of PAX3, PAX7, FKHR and the fusion genes PAX3-FKHR and PAX7-FKHR, and discuss the role of these genes and their downstream targets in development of ARMS. Additionally, we will review transgenic mouse models and their ability to mimic the formation of ARMS.
Oncotarget | 2015
Elin S. Gray; Helen Rizos; Anna L. Reid; Suzanah C. Boyd; Michelle R. Pereira; Johnny Lo; Varsha Tembe; James B. Freeman; Jenny H. Lee; Richard A. Scolyer; Kelvin Siew; Chris Lomma; Adam Cooper; Muhammad A. Khattak; Tarek Meniawy; Matteo S. Carlino; Michael Millward; Melanie Ziman
Repeat tumor biopsies to study genomic changes during therapy are difficult, invasive and data are confounded by tumoral heterogeneity. The analysis of circulating tumor DNA (ctDNA) can provide a non-invasive approach to assess prognosis and the genetic evolution of tumors in response to therapy. Mutation-specific droplet digital PCR was used to measure plasma concentrations of oncogenic BRAF and NRAS variants in 48 patients with advanced metastatic melanoma prior to treatment with targeted therapies (vemurafenib, dabrafenib or dabrafenib/trametinib combination) or immunotherapies (ipilimumab, nivolumab or pembrolizumab). Baseline ctDNA levels were evaluated relative to treatment response and progression-free survival (PFS). Tumor-associated ctDNA was detected in the plasma of 35/48 (73%) patients prior to treatment and lower ctDNA levels at this time point were significantly associated with response to treatment and prolonged PFS, irrespective of therapy type. Levels of ctDNA decreased significantly in patients treated with MAPK inhibitors (p < 0.001) in accordance with response to therapy, but this was not apparent in patients receiving immunotherapies. We show that circulating NRAS mutations, known to confer resistance to BRAF inhibitors, were detected in 3 of 7 (43%) patients progressing on kinase inhibitor therapy. Significantly, ctDNA rebound and circulating mutant NRAS preceded radiological detection of progressive disease. Our data demonstrate that ctDNA is a useful biomarker of response to kinase inhibitor therapy and can be used to monitor tumor evolution and detect the early appearance of resistance effectors.
Cancer Epidemiology, Biomarkers & Prevention | 2013
Pauline Zaenker; Melanie Ziman
Current diagnostic techniques used for the early detection of cancers are successful but subject to detection bias. A recent focus lies in the development of more accurate diagnostic tools. An increase in serologic autoantibody levels has been shown to precede the development of cancer disease symptoms. Therefore, autoantibody levels in patient blood serum have been proposed as diagnostic biomarkers for early-stage diagnosis of cancers. Their clinical application has, however, been hindered by low sensitivity, specificity, and low predictive value scores. These scores have been shown to improve when panels of multiple diagnostic autoantibody biomarkers are used. A five-marker biomarker panel has been shown to increase the sensitivity of prostate cancer diagnosis to 95% as compared with 12.2% for prostate-specific antigen alone. New potential biomarker panels were also discovered for lung, colon, and stomach cancer diagnosis with sensitivity of 76%, 65.4%, and 50.8%, respectively. Studies in breast and liver cancer, however, seem to favor single markers, namely α-2-HS-glycoprotein and des-γ-carboxyprothrombin with sensitivities of 79% and 89% for the early detection of the cancers. The aim of this review is to discuss the relevance of autoantibodies in cancer diagnosis and to outline the current methodologies used in the detection of autoantibodies. The review concludes with a discussion of the autoantibodies currently used in the diagnosis of cancers of the prostate, breast, lung, colon, stomach, and liver. A discussion of the potential future use of autoantibodies as diagnostic cancer biomarkers is also included in this review. Cancer Epidemiol Biomarkers Prev; 22(12); 2161–81. ©2013 AACR.
Development | 2014
Judith A. Blake; Melanie Ziman
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.
British Journal of Dermatology | 2013
Anna L. Reid; Michael Millward; Robert Pearce; Mark Lee; Markus H. Frank; A Ireland; L Monshizadeh; T Rai; Peter J. Heenan; Sandra Medic; P Kumarasinghe; Melanie Ziman
Background Multimarker quantitative real‐time polymerase chain reaction (qRT‐PCR) represents an effective method for detecting circulating tumour cells in the peripheral blood of patients with melanoma.
European Journal of Neurology | 2013
Jennifer A. Thompson; Travis Cruickshank; Luis Peñailillo; J Lee; Robert U. Newton; Roger A. Barker; Melanie Ziman
Despite advances in the understanding of Huntingtons disease (HD), treatment remains symptomatic. Multidisciplinary rehabilitation, however, appears to impact disease progression. Here we show the feasibility, safety and efficacy of a 9‐month multidisciplinary rehabilitation programme in a small cohort of patients with early‐to‐middle‐stage HD.
Developmental Dynamics | 2008
Judith A. Blake; Meghan Thomas; Jennifer A. Thompson; Robert B. White; Melanie Ziman
Pax transcription factors are critical for the development of the central nervous system (CNS) where they have a biphasic role, initially dictating CNS regionalization, while later orchestrating differentiation of specific cell subtypes. While a plethora of expression, misexpression, and mutation studies lend support for this argument and clarify the importance of Pax genes in CNS development, less well understood, and more perplexing, is the continued Pax expression in the adult CNS. In this article we explore the mechanism of action of Pax genes in general, and while being cognizant of existing developmental data, we also draw evidence from (1) adult progenitor cells involved in regeneration and tissue maintenance, (2) specific expression patterns in fully differentiated adult cells, and (3) analysis of direct target genes functioning downstream of Pax proteins. From this, we present a more encompassing theory that Pax genes are key regulators of a cells measured response to a dynamic environment. Developmental Dynamics 237:2791–2803, 2008.
Autoimmunity Reviews | 2016
Pauline Zaenker; Elin S. Gray; Melanie Ziman
A link between autoimmune responses and cancer via autoantibodies was first described in the 1950s. Since, autoantibodies have been studied for their potential use as cancer biomarkers, however the exact causes of their production remain to be elucidated. This review summarizes current theories of the causes of autoantibody production in cancer, namely: 1) defects in tolerance and inflammation, 2) changes in protein expression levels, 3) altered protein structure, and 4) cellular death mechanisms. We also highlight the need for further research into this field to improve our understanding of autoantibodies as biomarkers for cancer development and progression.
Clinical Biochemistry | 2015
Anna L. Reid; James B. Freeman; Michael Millward; Melanie Ziman; Elin S. Gray
OBJECTIVES Defining the BRAF mutation status in metastatic melanoma patients is critical to selecting patients for therapeutic treatment with targeted therapies. Circulating tumour cells (CTCs) can provide an alternative source of contemporaneous tumour genetic material. However methodologies to analyse the presence of rare mutations in a background of wild-type DNA requires a detailed assessment. Here we evaluate the sensitivity of two technologies for cancer mutation detection and the suitability of whole genome amplified DNA as a template for the detection of BRAF-V600 mutations. DESIGN AND METHODS Serial dilutions of mutant BRAF-V600E DNA in wild-type DNA were tested using both competitive allele-specific PCR (castPCR) and droplet digital PCR (ddPCR), with and without previous whole genome amplification (WGA). Using immunomagnetic beads, we partially enriched CTCs from blood obtained from metastatic melanoma patients with confirmed BRAF mutation positive tumours and extracted RNA and DNA from the CTCs. We used RT-PCR of RNA to confirm the presence of melanoma cells in the CTC fraction then the DNAs of CTC positive fractions were WGA and tested for BRAF V600E or V600K mutations by ddPCRs. RESULTS WGA DNA produced lower than expected fractional abundances by castPCR analysis but not by ddPCR. Moreover, ddPCR was found to be 200 times more sensitive than castPCR and in combination with WGA produced the most concordant results, with a limit of detection of 0.0005%. BRAF-V600E or V600K mutated DNA was detected in 77% and 44%, respectively, of enriched CTC fractions from metastatic melanoma patients carrying the corresponding mutations. CONCLUSIONS Our results demonstrate that using ddPCR in combination with WGA DNA allows the detection with high sensitivity of cancer mutations in partially enriched CTC fractions.