Melchiorre Cervello
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melchiorre Cervello.
Annals of the New York Academy of Sciences | 2006
Lydia Giannitrapani; Maurizio Soresi; E. La Spada; Melchiorre Cervello; Natale D'Alessandro; Giuseppe Montalto
Abstract: The liver is morphologically and functionally modulated by sex hormones. Long‐term use of oral contraceptives (OCs) and anabolic androgenic steroids (AASs) can induce both benign (hemangioma, adenoma, and focal nodular hyperplasia [FNH]) and malignant (hepatocellular carcinoma [HCC]) hepatocellular tumors. Hepatic adenomas (HAs) are rare, benign neoplasms usually occurring in young women, the development and the complications of which have been related to the strength of OCs and the duration of their use. HA incidence has fallen since the introduction of pills containing smaller amounts of estrogens. FNH is a benign lesion, most commonly seen in young women, which is thought to represent a local hyperplastic response of hepatocytes to a vascular abnormality. Because of the female predominance and the young age at onset, a role of female hormones has been suggested. Furthermore, a large proportion of women with FNH (50–75%) are OC users. Liver hemangiomas (LHs) are the most common benign liver tumors and are seen more commonly in young adult females. The female predilection and clinical observations of LH growth under conditions of estrogenic exposure suggest a possible role for estrogen in the pathogenesis of LHs. HCC has become one of the most widespread tumors in the world in recent years, representing the sixth leading cancer and the third most common cause of death from cancer. Apart from liver cirrhosis, numerous other factors responsible for its onset have been proposed: hepatitis infections from virus B (HBV) and C (HCV), alcohol, smoking, and aflatoxin. However, regardless of etiology, chronic liver diseases progress at unequal rates in the two sexes, with the major sequelae, such as cirrhosis and HCC, being more frequent in men than in women. These epidemiological data have prompted researchers to investigate the relationship between sex hormones and liver tumors. The human liver expresses estrogen and androgen receptors and experimentally both androgens and estrogens have been implicated in stimulating hepatocyte proliferation and may act as liver tumor inducers or promoters.
Expert Opinion on Therapeutic Targets | 2008
Linda S. Steelman; Kristin Stadelman; William H. Chappell; Stefan Horn; Jörg Bäsecke; Melchiorre Cervello; Ferdinando Nicoletti; Massimo Libra; Franca Stivala; Alberto M. Martelli; James A. McCubrey
Background: The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. Objective: This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. Methods: We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. Results/conclusions: The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.
Journal of Cellular Physiology | 2011
James A. McCubrey; Linda S. Steelman; C. Ruth Kempf; William H. Chappell; Stephen L. Abrams; Franca Stivala; Graziella Malaponte; Ferdinando Nicoletti; Massimo Libra; Jörg Bäsecke; Danijela Maksimovic-Ivanic; Sanja Mijatović; Giuseppe Montalto; Melchiorre Cervello; Lucio Cocco; Alberto M. Martelli
Chemotherapy remains a commonly used therapeutic approach for many cancers. Indeed chemotherapy is relatively effective for treatment of certain cancers and it may be the only therapy (besides radiotherapy) that is appropriate for certain cancers. However, a common problem with chemotherapy is the development of drug resistance. Many studies on the mechanisms of drug resistance concentrated on the expression of membrane transporters and how they could be aberrantly regulated in drug resistant cells. Attempts were made to isolate specific inhibitors which could be used to treat drug resistant patients. Unfortunately most of these drug transporter inhibitors have not proven effective for therapy. Recently the possibilities of more specific, targeted therapies have sparked the interest of clinical and basic researchers as approaches to kill cancer cells. However, there are also problems associated with these targeted therapies. Two key signaling pathways involved in the regulation of cell growth are the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways. Dysregulated signaling through these pathways is often the result of genetic alterations in critical components in these pathways as well as mutations in upstream growth factor receptors. Furthermore, these pathways may be activated by chemotherapeutic drugs and ionizing radiation. This review documents how their abnormal expression can contribute to drug resistance as well as resistance to targeted therapy. This review will discuss in detail PTEN regulation as this is a critical tumor suppressor gene frequently dysregulated in human cancer which contributes to therapy resistance. Controlling the expression of these pathways could improve cancer therapy and ameliorate human health. J. Cell. Physiol. 226: 2762–2781, 2011.
International Journal of Oncology | 2012
Giulia Costanza Leonardi; Saverio Candido; Melchiorre Cervello; Daria Nicolosi; Fabio Raiti; Salvatore Travali; Demetrios A. Spandidos; Massimo Libra
The tumor microenvironment has been largely studied as a dynamic system orchestrated by inflammatory cells, including cancer cells, stroma as well as the extracellular matrix. It is useful to describe and predict the phenotypic characteristics of cancer. Furthermore, a better understanding of its interplay with the various aspects of the tumor cells may be utilized for the discovery of novel molecular targets. Liver cancer is considered a model of the relation occurring between the tumor micro-environment and tumor development. The chronic inflammatory status of the liver, sustained by the infection of hepatitis viruses, as well as the production of cytokines and growth factors within the parenchyma, lead to an intricate microenvironment. The identification of novel molecular therapeutic targets may improve the outcome of patients with liver cancer as it remains the third leading cause of cancer death worldwide. In the present study, the tumor microenvironment in hepatocellular carcinoma (HCC) was explored by a review of the literature. Studies on hepatitis virus infections and the consequent chronic inflammatory status were examined. In this context, immune-mediated and/or virus-related molecular mechanisms have been hypothesized as being responsible for liver cancer development. The interlink among HCC microenvironment components, comprising cellular elements, cytokines, growth factors and several proteins is also described together with the role of matrix metalloproteinases in HCC development. Finally, the rationale for targeting tumor-stromal interface is summarized in the context of new therapeutic opportunities.
Journal of Hepatology | 2012
C. Scisciani; Stefania Vossio; Francesca Guerrieri; V. Schinzari; Rossana De Iaco; Paolo D’Onorio de Meo; Melchiorre Cervello; Giuseppe Montalto; Teresa Pollicino; Giovanni Raimondo; Massimo Levrero; N. Pediconi
BACKGROUND & AIMS miR-224 is up-regulated in human HCCs as compared to both paired peri-tumoral cirrhotic tissues and cirrhotic livers without HCC. Here, we have cloned the miR-224 regulatory region and characterized its transcriptional regulation by the NFκB-dependent inflammatory pathways. METHODS Mature miRNA expression was evaluated by a 2 step stem-loop real-time RT-PCR. The recruitment of polymerase II and transcription factors on the pre-miR-224 promoter has been assessed by ChIPSeq and ChIP. RESULTS We found miR-224 levels strongly up-regulated in both peri-tumoral cirrhotic livers and HCC samples as compared to normal livers. In silico analysis of the putative miR-224 promoter revealed multiple NFκB sites. We showed that LTα and TNFα activate transcription from the miR-224 promoter and of endogenous miR-224 expression in HCC cell lines, whereas the expression of miR-224 target API5 was reduced. Exogenously expressed p65/RelA activates the miR-224 promoter and a dominant negative form of IκBα (IκBSR) represses it. ChIP analysis showed that p65/NFκB is recruited on the miR-224 promoter and that its binding sharply increases after exposure to LPS, TNFα, and LTα. Altogether these findings link the inflammatory signals to NFκB-mediated activation of miR-224 expression. An antago-miR specific for miR-224 blocked LPS and LTα stimulated HCC cells migration and invasion. Conversely, the IKK inhibitor BMS-345541 blocks pre-miR-224-induced cellular migration and invasion. CONCLUSIONS Our results identify p65/NFκB as a direct transcriptional regulator of miR-224 expression and link miR-224 up-regulation with the activation of the LPS, LTα, and TNFα inflammatory pathways and cell migration/invasion in HCC.
Cancer Letters | 2002
Monica Notarbartolo; Melchiorre Cervello; Luisa Dusonchet; Antonella Cusimano; Natale D'Alessandro
We studied the human HL60 leukemia cell line and its multidrug resistant (MDR) variant HL60R. In contrast to the HL60, HL60R showed an inability to undergo apoptosis from doxorubicin (Dox) or other different stimuli, including cisplatin, Fas ligation and serum withdrawal. HL60R cells lost surface Fas expression, but we found no evidence that Fas/FasL mediates the apoptotic effects of Dox in HL60. P-glycoprotein (P-gp) did not seem to play a major role as a specific inhibitor of apoptosis. In fact, the P-gp inhibitor verapamil reversed only partially the resistance to Dox-induced apoptosis of the MDR cells. In addition, it did not modify the rate of apoptosis induced from the other stimuli in the same cells. The expression of p53 or Bcl-2 was not different between HL60 and HL60R. However, in HL60R there was an increase in the mRNAs of inhibitory of apoptosis proteins (IAPs) like neuronal apoptosis inhibitory protein (NAIP), c-IAP-2 and survivin. Treatment with Dox or serum starvation strongly down-regulated X-linked IAP and survivin mRNAs in HL60. Cisplatin decreased NAIP and survivin mRNAs in the same cells. However, in HL60R the levels of these IAP mRNAs were much less affected by the treatments. These results support that IAPs may be involved in tumor resistance to chemotherapeutic drugs or other apoptotic agents.
Expert Opinion on Emerging Drugs | 2010
James A. McCubrey; Linda S. Steelman; Steven L. Abrams; William H. Chappell; Suzanne Russo; Roger Ove; Michele Milella; Agostino Tafuri; Paolo Lunghi; Antonio Bonati; Franca Stivala; Ferdinando Nicoletti; Massimo Libra; Alberto M. Martelli; Giuseppe Montalto; Melchiorre Cervello
Importance of the field: The Ras/Raf/MEK/ERK pathway is often activated by genetic alterations in upstream signaling molecules. Integral components of this pathway such as Ras and B-Raf are also activated by mutation. The Ras/Raf/MEK/ERK pathway has profound effects on proliferative, apoptotic and differentiation pathways. This pathway can often be effectively silenced by MEK inhibitors. Areas covered by this review: This review will discuss targeting of MEK which could lead to novel methods to control abnormal proliferation which arises in cancer and other proliferative diseases. This review will cover the scientific literature from 1980 to present and is a follow on from a review which focused on Emerging Raf Inhibitors published in this same review series. What the reader will gain: By reading this review the reader will understand the important roles that genetics play in the response of patients to MEK inhibitors, the potential of combining MEK inhibitors with other types of therapy, the prevention of cellular aging and the development of cancer stem cells. Take home message: Targeting MEK has been shown to be effective in suppressing many important pathways involved in cell growth and the prevention of apoptosis. MEK inhibitors have many potential therapeutic uses in the suppression of cancer, proliferative diseases and aging.
Advances in biological regulation | 2015
James A. McCubrey; Stephen L. Abrams; Timothy L. Fitzgerald; Lucio Cocco; Alberto M. Martelli; Giuseppe Montalto; Melchiorre Cervello; Aurora Scalisi; Saverio Candido; Massimo Libra; Linda S. Steelman
The EGFR/PI3K/PTEN/Akt/mTORC pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, cancer initiating cells (CICs) and metastasis. The expression of this pathway is frequently altered in breast and other cancers due to mutations at or aberrant expression of: HER2, EGFR1, PIK3CA, and PTEN as well as other oncogenes and tumor suppressor genes. miRs and epigenetic mechanisms of gene regulation are also important events which regulate this pathway. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway has been associated with CICs and in some cases resistance to therapeutics. We will review the effects of activation of the EGFR/PI3K/PTEN/Akt/mTORC pathway primarily in breast cancer and development of drug resistance. The targeting of this pathway and other interacting pathways will be discussed as well as clinical trials with novel small molecule inhibitors as well as established drugs that are used to treat other diseases. In this manuscript, we will discuss an inducible EGFR model (v-ERB-B:ER) and its effects on cell growth, cell cycle progression, activation of signal transduction pathways, prevention of apoptosis in hematopoietic, breast and prostate cancer models.
Cell Cycle | 2012
Melchiorre Cervello; Dimcho Bachvarov; Nadia Lampiasi; Antonella Cusimano; Antonina Azzolina; James A. McCubrey; Giuseppe Montalto
Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced hepatocellular carcinoma (HCC). However, as the clinical application of sorafenib evolves, there is increasing interest in defining the mechanisms underlying its anti-tumor activity. Considering that this specific inhibitor could target unexpected molecules depending on the biologic context, a precise understanding of its mechanism of action could be critical to maximize its treatment efficacy, while minimizing adverse effects. Two human HCC cell lines (HepG2 and Huh7), carrying different biological and genetic characteristics, were used in this study to examine the intracellular events leading to sorafenib-induced HCC cell-growth inhibition. Sorafenib inhibited cell growth in both cell lines in a dose- and time-dependent manner and significantly altered expression levels of 826 and 2011 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in angiogenesis, apoptosis, transcription regulation, signal transduction, protein biosynthesis and modification were predominantly upregulated, while genes implicated in cell cycle control, DNA replication recombination and repair, cell adhesion, metabolism and transport were mainly downregulated upon treatment. However, each sorafenib-treated HCC cell line displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semiquantitative and quantitative RT-PCR and by western blotting. Many novel genes emerged from our transcriptomics analysis that had not previously been reported to be effected by sorafenib. Further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies.
Annals of the New York Academy of Sciences | 2006
Lydia Giannitrapani; Melchiorre Cervello; Maurizio Soresi; Monica Notarbartolo; Marzia La Rosa; Lucrezia Virruso; Natale D'Alessandro; Giuseppe Montalto
Abstract: Interleukin‐6 plays a central role in regulating the immune system, hematopoiesis, and acute phase reaction. It interacts with a receptor complex consisting of a specific ligand‐binding protein (IL‐6R, gp80) and a signal transduction protein (gp130). In this report, serum levels of IL‐6 and a soluble form of the interleukin‐6 receptor (sIL‐6R) were evaluated in patients with hepatocellular carcinoma. The correlation between IL‐6 and sIL‐6R values, the stage of hepatocellular carcinoma, and main liver function tests was also studied.