Melchor Maestro
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melchor Maestro.
Tree Physiology | 2015
Audrey G. Quentin; Elizabeth A. Pinkard; Michael G. Ryan; David T. Tissue; L. Scott Baggett; Henry D. Adams; Pascale Maillard; Jacqueline Marchand; Simon M. Landhäusser; André Lacointe; Yves Gibon; William R. L. Anderegg; Shinichi Asao; Owen K. Atkin; Marc Bonhomme; Cj Claye; Pak S. Chow; Anne Clément-Vidal; Noel W. Davies; L. Turin Dickman; Rita Dumbur; David S. Ellsworth; Kristen Falk; Lucía Galiano; José M. Grünzweig; Henrik Hartmann; Günter Hoch; Sharon M. Hood; Je Jones; Takayoshi Koike
Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.
Plant Ecology | 2007
Yolanda Pueyo; Concepción L. Alados; Melchor Maestro; Benjamin Komac
Iberian gypsophile plant communities are considered a priority for conservation by the European Community because of their highly specialized flora in gypsum outcrops in arid and semiarid regions. Despite the ecological importance of these ecosystems, the edaphic factors that constrain plant communities on gypsiferous soils remain unclear. It has been proposed that both the chemical and physical restrictive conditions of gypsum soils determine gypsophily in plants. Here we hypothesize that the rigors of the gypsum soil environment depends on topography, decreasing from flat areas on hilltops to south-oriented slopes and finally to slopes oriented to the north. We also hypothesized that the relaxation of the rigors of the gypsum soil environment with topography affects both to individual plant and community characteristics of gypsophile vegetation: we expect a reduction of gypsophyte abundance, an increase of diversity and the amelioration of facilitative interactions of plant species. We analysed the physical and chemical properties of gypsum soils that have been proposed that determine the rigors of the gypsum soil environment (i.e.: unbalanced ion concentrations and superficial soil crust). The predicted rigor gradient along topographical locations was confirmed and was mainly caused by superficial soil crust. The decreasing rigor gradient was accompanied by a fall in the abundance of gypsophytes. However, when gypsophytes were considered separately, several patterns were observed, indicating distinct tolerance to relaxation of rigor of the gypsum soil conditions and different competition abilities between gypsophytes. Plant species were more clumped, and gypsophile communities presented higher diversity, evenness and richness values where rigor of gypsum soil conditions were maximum (flat hilltop positions). Relaxation of rigor (north-oriented slopes) was characterized by loss of facilitative interaction between species and the dominance of the gypsovag Rosmarinus officinalis L., although richness was still very high, which can be attributed to the coexistence of gypsophytes and gypsovags. We conclude that the rigor of gypsum soil environment gradient with topography is mainly determined by superficial soil crust, and it is a crucial determinant of gypsophile plant communities.
New Phytologist | 2008
Sara Palacio; Rubén Milla; Jorge Albuixech; Carmen Pérez-Rontomé; Jesús Julio Camarero; Melchor Maestro; Gabriel Montserrat-Martí
This study assesses how different phases of shoot growth underlie seasonal change in leaf and stem dry matter content (LDMC and SDMC, respectively) of 12 woody Mediterranean species. The relationship between LDMC and nonstructural carbohydrate (NSC) concentrations is also explored and the seasonal vs interspecies variability of LDMC compared. LDMC, SDMC and shoot elongation rate (SER) were measured on a monthly basis for a minimum of 12 months. Bud growth rate (BGR) and NSC concentrations were also assessed in several of the study species. LDMC and SDMC decreased during shoot elongation in spring and increased in summer, showing a significant negative correlation with SER, but were unrelated to BGR. Half of the species analysed showed a positive relationship between LDMC and NSC. Seasonal fluctuations of LDMC within species were higher than interspecies differences, and species ranking was significantly affected by the month of sampling, except during winter months. Seasonal changes in LDMC and SDMC are mainly related to shoot elongation phenology, and NSC sink-source relationships between old and growing organs can explain this relationship in some species. Owing to the high seasonal variability in LDMC, it is recommended that samples for comparative purposes should be collected as close to the winter as possible.
PLOS ONE | 2014
Sara Palacio; Matt Aitkenhead; Adrián Escudero; Gabriel Montserrat-Martí; Melchor Maestro; A.H. Jean Robertson
Gypsum soils are among the most restrictive and widespread substrates for plant life. Plants living on gypsum are classified as gypsophiles (exclusive to gypsum) and gypsovags (non-exclusive to gypsum). The former have been separated into wide and narrow gypsophiles, each with a putative different ecological strategy. Mechanisms displayed by gypsum plants to compete and survive on gypsum are still not fully understood. The aim of this study was to compare the main chemical groups in the leaves of plants with different specificity to gypsum soils and to explore the ability of Fourier transform infrared (FTIR) spectra analyzed with neural network (NN) modelling to discriminate groups of gypsum plants. Leaf samples of 14 species with different specificity to gypsum soils were analysed with FTIR spectroscopy coupled to neural network (NN) modelling. Spectral data were further related to the N, C, S, P, K, Na, Ca, Mg and ash concentrations of samples. The FTIR spectra of the three groups analyzed showed distinct features that enabled their discrimination through NN models. Wide gypsophiles stood out for the strong presence of inorganic compounds in their leaves, particularly gypsum and, in some species, also calcium oxalate crystals. The spectra of gypsovags had less inorganic chemical species, while those of narrow gypsum endemisms had low inorganics but shared with wide gypsophiles the presence of oxalate. Gypsum and calcium oxalate crystals seem to be widespread amongst gypsum specialist plants, possibly as a way to tolerate excess Ca and sulphate. However, other mechanisms such as the accumulation of sulphates in organic molecules are also compatible with plant specialization to gypsum. While gypsovags seem to be stress tolerant plants that tightly regulate the uptake of S and Ca, the ability of narrow gypsum endemisms to accumulate excess Ca as oxalate may indicate their incipient specialization to gypsum.
American Journal of Botany | 2013
Sara Palacio; C. Guillermo Bueno; José Azorín; Melchor Maestro; Daniel Gómez-García
UNLABELLED PREMISE OF THE STUDY Wild-boar soil disturbance (i.e., rooting) increases the abundance of some species of geophytes (i.e., plants with underground renewal buds) in upland meadows. However, the mechanisms that could lead to such enhanced prevalence remain unexplored. • METHODS We analyzed the effects of wild-boar disturbance on the size, nutrient (N, P, K, C, and total ash), and nonstructural carbohydrate (soluble sugars, starch plus fructans, and total nonstructural carbohydrate) content of the storage organs of five taxa of upland geophytes. Results were explored in relation to the nutrient availability (total N, available P, and K) in the soil. • KEY RESULTS Wild-boar rooting increased the size and the nutrient content of the storage organs of geophytes. Such enhanced storage was further promoted by rooting recurrence and intensity. Although we could not detect a direct impact of rooting on soil nutrient concentrations, plants were clearly N limited and such limitation was ameliorated in areas rooted by wild boar. Furthermore, plant-soil interactions for N were different in rooted areas, where plant N-concentrations responded positively to soil N. • CONCLUSIONS Geophytes growing in rooted areas have an increased nutrient value, which may promote the revisit of wild boars to previously rooted areas, with further positive feed-back effects on plant quality. This plant-animal interaction may shape upland geophyte communities.
Tree Physiology | 2013
Sara Palacio; Alison J. Hester; Melchor Maestro; Pete Millard
Herbivore effects on leaf litter can have a strong impact on ecosystem nutrient cycling. Although such effects are well described for insect herbivory, research on the impacts of browsing by mammalian herbivores on leaf litter dynamics and nutrient cycling has been more limited, particularly at the level of the individual plant. Clipping treatments (66% shoot removal twice, plus unclipped) were applied to analyse the effect of browsing on the phenology (start date and pattern of leaf shedding) and leaf litter quality (nitrogen (N), soluble sugars, starch and total non-structural carbohydrate concentrations, plus C : N ratios) of Betula pubescens Ehrh. and Quercus petraea [Matt.] Liebl. saplings. Clipping decreased leaf litter biomass and delayed leaf senescence and shedding, but did not change the phenological timing of litterfall between senescence and shedding. The quality of leaf litter of both species was increased by simulated browsing, through an increase in N and carbohydrate concentrations (mainly soluble sugars) and a decreased C : N ratio. This is the first evidence we are aware of that browsing may cause changes in leaf shedding phenology, delaying the process without altering its pattern. Our results also indicate that simulated browsing increases the quality of leaf litter. However, the potential positive effect of browsing on N cycling through litter quality may be offset by its negative impact on the amount of N shed per tree.
PLOS ONE | 2014
Sara Palacio; Melchor Maestro; Gabriel Montserrat-Martí
Nitrogen (N) is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental 15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants.
Trees-structure and Function | 2009
Gabriel Montserrat-Martí; Jesús Julio Camarero; Sara Palacio; Carmen Pérez-Rontomé; Rubén Milla; Jorge Albuixech; Melchor Maestro
Annals of Botany | 2007
Sara Palacio; Adrián Escudero; Gabriel Montserrat-Martí; Melchor Maestro; Rubén Milla; María José Albert
Quaternary International | 2008
Mario Morellón; Blas L. Valero-Garcés; Ana Moreno; Penélope González-Sampériz; Pilar Mata; Oscar E. Romero; Melchor Maestro; Ana Navas