Melina Claussnitzer
Broad Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melina Claussnitzer.
The New England Journal of Medicine | 2015
Melina Claussnitzer; Simon N. Dankel; Kyoung-Han Kim; Gerald Quon; Wouter Meuleman; Christine Haugen; Viktoria Glunk; Isabel S. Sousa; Jacqueline L. Beaudry; Vijitha Puviindran; Nezar A. Abdennur; Jannel Liu; Per-Arne Svensson; Yi-Hsiang Hsu; Daniel J. Drucker; Gunnar Mellgren; Chi-chung Hui; Hans Hauner; Manolis Kellis
BACKGROUND Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive. METHODS We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients. RESULTS Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7. CONCLUSIONS Our results point to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-obesity effects. (Funded by the German Research Center for Environmental Health and others.).
Diabetes | 2009
Helmut Laumen; Akuma D. Saningong; Iris M. Heid; Jochen Hess; Christian Herder; Melina Claussnitzer; Jens Baumert; Claudia Lamina; Wolfgang Rathmann; Eva-Maria Sedlmeier; Norman Klopp; Barbara Thorand; H.-Erich Wichmann; Thomas Illig; Hans Hauner
OBJECTIVE Adiponectin (APM1, ACDC) is an adipocyte-derived protein with downregulated expression in obesity and insulin-resistant states. Several potentially regulatory single nucleotide polymorphisms (SNPs) within the APM1 gene promoter region have been associated with circulating adiponectin levels. None of them have been functionally characterized in adiponectin-expressing cells. Hence, we investigated three SNPs (rs16861194, rs17300539, and rs266729) for their influence on adiponectin promoter activity and their association with circulating adiponectin levels. RESEARCH DESIGN AND METHODS Basal and rosiglitazone-induced promoter activity of different SNP combinations (haplotypes) was analyzed in 3T3-L1 adipocytes using luciferase reporter gene assays and DNA binding studies comparing all possible APM1 haplotypes. This functional approach was complemented with analysis of epidemiological population-based data of 1,692 participants of the MONICA/KORA S123 cohort and 696 participants from the KORA S4 cohort for SNP and haplotype association with circulating adiponectin levels. RESULTS Major to minor allele replacements of the three SNPs revealed significant effects on promoter activity in luciferase assays. Particularly, a minor variant in rs16861194 resulted in reduced basal and rosiglitazone-induced promoter activity and hypoadiponectinemia in the epidemiological datasets. The haplotype with the minor allele in all three SNPs showed a complete loss of promoter activity, and no subject carried this haplotype in either of the epidemiological samples (combined P value for statistically significant difference from a random sample was 0.006). CONCLUSIONS Our results clearly demonstrate that promoter variants associated with hypoadiponectinemia in humans substantially affect adiponectin promoter activity in adipocytes. Our combination of functional experiments with epidemiological data overcomes the drawback of each approach alone.
Genome Research | 2014
Derek Spieler; Maria Kaffe; Franziska Knauf; José Bessa; Juan J. Tena; Florian Giesert; Barbara Schormair; Erik Tilch; Hyun-Ok Kate Lee; Marion Horsch; Darina Czamara; Nazanin Karbalai; Christine von Toerne; Melanie Waldenberger; Christian Gieger; Peter Lichtner; Melina Claussnitzer; Ronald Naumann; Bertram Müller-Myhsok; Miguel Torres; Lillian Garrett; Jan Rozman; Martin Klingenspor; Valérie Gailus-Durner; Helmut Fuchs; Martin Hrabé de Angelis; Johannes Beckers; Sabine M. Hölter; Thomas Meitinger; Stefanie M. Hauck
Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS.
Obesity | 2014
Simon N. Dankel; Jessica Svärd; Simone Matthä; Melina Claussnitzer; Nora Klöting; Viktoria Glunk; Zinayida Fandalyuk; Elise Grytten; Margit H. Solsvik; Hans-Jørgen Nielsen; Christian Busch; Hans Hauner; Matthias Blüher; Thomas Skurk; Jørn V. Sagen; Gunnar Mellgren
COL6A3 may modulate adipose tissue function in obesity and insulin resistance. A role for human adipocytes linking COL6A3 with insulin resistance warrants exploration.
PLOS ONE | 2013
Cornelia Then; Simone Wahl; Anna Kirchhofer; Harald Grallert; Susanne M. Krug; Gabi Kastenmüller; Werner Römisch-Margl; Melina Claussnitzer; Thomas Illig; Margit Heier; Christa Meisinger; Jerzy Adamski; Barbara Thorand; Cornelia Huth; Annette Peters; Cornelia Prehn; Ina Heukamp; Helmut Laumen; Andreas Lechner; Hans Hauner; Jochen Seissler
Aims/Hypothesis Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene have been shown to display a powerful association with type 2 diabetes. The aim of the present study was to evaluate metabolic alterations in carriers of a common TCF7L2 risk variant. Methods Seventeen non-diabetic subjects carrying the T risk allele at the rs7903146 TCF7L2 locus and 24 subjects carrying no risk allele were submitted to intravenous glucose tolerance test and euglycemic-hyperinsulinemic clamp. Plasma samples were analysed for concentrations of 163 metabolites through targeted mass spectrometry. Results TCF7L2 risk allele carriers had a reduced first-phase insulin response and normal insulin sensitivity. Under fasting conditions, carriers of TCF7L2 rs7903146 exhibited a non-significant increase of plasma sphingomyelins (SMs), phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) species. A significant genotype effect was detected in response to challenge tests in 6 SMs (C16:0, C16:1, C18:0, C18:1, C24:0, C24:1), 5 hydroxy-SMs (C14:1, C16:1, C22:1, C22:2, C24:1), 4 lysoPCs (C14:0, C16:0, C16:1, C17:0), 3 diacyl-PCs (C28:1, C36:6, C40:4) and 4 long-chain acyl-alkyl-PCs (C40:2, C40:5, C44:5, C44:6). Discussion Plasma metabolomic profiling identified alterations of phospholipid metabolism in response to challenge tests in subjects with TCF7L2 rs7903146 genotype. This may reflect a genotype-mediated link to early metabolic abnormalities prior to the development of disturbed glucose tolerance.
Molecular Nutrition & Food Research | 2011
Melina Claussnitzer; Thomas Skurk; Hans Hauner; Hannelore Daniel; Manuela J. Rist
SCOPE The adipose tissue is a major site of insulin action and contributes substantially to energy homeostasis. Insulin increases the extraction of glucose from circulation into adipose tissue by recruiting the glucose transporter GLUT4 to the plasma membrane. It has been proposed that dietary flavonoids may interfere with glucose transport processes. METHODS AND RESULTS We have used murine 3T3-L1 adipocytes and isolated mature human adipocytes to assess the interaction of selected flavonoids with glucose uptake, both in the basal state and after insulin stimulation. Kinetic characterization of 2-deoxyglucose uptake in the basal state revealed in both cell types an apparent K(m) of around 8 mM with no change in affinity but a significant increase in maximal influx in the presence of insulin. A screening of representative flavonoids of different structural classes revealed the flavanone naringenin and the isoflavone daidzein to affect glucose transport significantly with half-maximal inhibition at concentrations of around 60-80 μM for basal and 70-110 μM for insulin-stimulated glucose uptake in both 3T3-L1 adipocytes and mature human adipocytes. CONCLUSION Considering attainable plasma concentrations of flavonoids in vivo, we assume that even under physiological conditions naringenin and daidzein could impair glucose removal from plasma, which may pose a risk to patients with diabetes mellitus.
Nucleic Acids Research | 2013
Kerstin Mueller; Jasmin Quandt; Ralf Marienfeld; Petra Weihrich; Katja Fiedler; Melina Claussnitzer; Helmut Laumen; Martin Vaeth; Friederike Berberich-Siebelt; Edgar Serfling; Thomas Wirth; Cornelia Brunner
The transcriptional co-activator BOB.1/OBF.1 was originally identified in B cells and is constitutively expressed throughout B cell development. BOB.1/OBF.1 associates with the transcription factors Oct1 and Oct2, thereby enhancing octamer-dependent transcription. In contrast, in T cells, BOB.1/OBF.1 expression is inducible by treatment of cells with PMA/Ionomycin or by antigen receptor engagement, indicating a marked difference in the regulation of BOB.1/OBF.1 expression in B versus T cells. The molecular mechanisms underlying the differential expression of BOB.1/OBF.1 in T and B cells remain largely unknown. Therefore, the present study focuses on mechanisms controlling the transcriptional regulation of BOB.1/OBF.1 and Oct2 in T cells. We show that both calcineurin- and NF-κB-inhibitors efficiently attenuate the expression of BOB.1/OBF.1 and Oct2 in T cells. In silico analyses of the BOB.1/OBF.1 promoter revealed the presence of previously unappreciated combined NFAT/NF-κB sites. An array of genetic and biochemical analyses illustrates the involvement of the Ca2+/calmodulin-dependent phosphatase calcineurin as well as NFAT and NF-κB transcription factors in the transcriptional regulation of octamer-dependent transcription in T cells. Conclusively, impaired expression of BOB.1/OBF.1 and Oct2 and therefore a hampered octamer-dependent transcription may participate in T cell-mediated immunodeficiency caused by the deletion of NFAT or NF-κB transcription factors.
Metabolomics | 2014
Simone Wahl; Susanne Krug; Cornelia Then; Anna Kirchhofer; Gabi Kastenmüller; Tina Brand; Thomas Skurk; Melina Claussnitzer; Cornelia Huth; Margit Heier; Christa Meisinger; Annette Peters; Barbara Thorand; Christian Gieger; Cornelia Prehn; Werner Römisch-Margl; Jerzy Adamski; Karsten Suhre; Thomas Illig; Harald Grallert; Helmut Laumen; Jochen Seissler; Hans Hauner
The measurement of metabolites during intravenous or nutritional challenges may improve the identification of novel metabolic signatures which are not detectable in the fasting state. Here, we comprehensively characterized the plasma metabolomics response to five defined challenge tests and explored their use to identify interactions with the FTO rs9939609 obesity risk genotype. Fifty-six non-diabetic male participants of the KORA S4/F4 cohort, including 25 homozygous carriers of the FTO risk allele (AA genotype) and 31 carriers of the TT genotype were recruited. Challenges comprised an oral glucose tolerance test, a standardized high-fat high-carbohydrate meal and a lipid tolerance test, as well as an intravenous glucose tolerance test and a euglycemic hyperinsulinemic clamp. Blood was sampled for biochemical and metabolomics measurement before and during the challenges. Plasma samples were analyzed using a mass spectrometry-based metabolomics approach targeting 163 metabolites. Linear mixed-effects models and cluster analysis were performed. In both genotype groups, we observed significant challenge-induced changes for all major metabolite classes (amino acids, hexose, acylcarnitines, phosphatidylcholines, lysophosphatidylcholines and sphingomyelins, with corrected p-values ranging from 0.05 to 6.7E−37), which clustered in five distinct metabolic response profiles. Our data contribute to the understanding of plasma metabolomics response to diverse metabolic challenges, including previously unreported metabolite changes in response to intravenous challenges. The FTO genotype had only minor effects on the metabolite fluxes after standardized metabolic challenges.
Journal of Bone and Mineral Research | 2016
Carrie M. Nielson; Ching-Ti Liu; Albert V. Smith; Cheryl L. Ackert-Bicknell; Sjur Reppe; Johanna Jakobsdottir; Christina L. Wassel; Thomas C. Register; Ling Oei; Nerea Alonso; Edwin H. G. Oei; Neeta Parimi; Elizabeth J. Samelson; Michael A. Nalls; Joseph M. Zmuda; Thomas Lang; Mary L. Bouxsein; Jeanne C. Latourelle; Melina Claussnitzer; Kristin Siggeirsdottir; Priya Srikanth; Erik Lorentzen; Liesbeth Vandenput; Carl D. Langefeld; Laura M. Raffield; Greg Terry; Amanda J. Cox; Matthew A. Allison; Michael H. Criqui; Bowden Dw
Genome‐wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta‐analysis (n = 15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta‐analyses to determine associations with morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD‐associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (β = 0.22, p = 1.9 × 10–8) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher vBMD (β = 0.09, p = 1.2 × 10–10) and decreased risk of clinical vertebral fracture (OR = 0.82; FDR p = 7.4 × 10–4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β = 0.28, FDR p = 0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β = 0.12, FDR p = 1.7 × 10–3, functions in bone‐related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence.
Nature Genetics | 2017
Barbara E. Stranger; Lori E. Brigham; Richard Hasz; Marcus Hunter; Christopher Johns; Mark C. Johnson; Gene Kopen; William F. Leinweber; John T. Lonsdale; Alisa McDonald; Bernadette Mestichelli; Kevin Myer; Brian Roe; Michael Salvatore; Saboor Shad; Jeffrey A. Thomas; Gary Walters; Michael Washington; Joseph Wheeler; Jason Bridge; Barbara A. Foster; Bryan M. Gillard; Ellen Karasik; Rachna Kumar; Mark Miklos; Michael T. Moser; Scott Jewell; Robert G. Montroy; Daniel C. Rohrer; Dana R. Valley
Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variants cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.