Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melina Kalagasidis Krušić is active.

Publication


Featured researches published by Melina Kalagasidis Krušić.


International Journal of Pharmaceutics | 2010

Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein

Nikola Milašinović; Melina Kalagasidis Krušić; Zorica Knežević-Jugović; Jovanka M. Filipović

Temperature- and pH-sensitive hydrogels, based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA), were synthesized by free radical crosslinking copolymerization in the presence of lipase from Candida rugosa. The samples were characterized for their sensitivity to the changes of external conditions and the ability to control the release of a hydrophilic model protein, lipase. These hydrogels were highly responsive to temperature and pH, at constant ionic strength. Parameters, such as the crosslinking degree and non-ionic/ionic (NiPAAm/IA) ratio, were found to impact the hydrogel structure, mechanical properties, morphology and swelling kinetics at different pH and temperatures. The hydrogels demonstrated protein loading efficiency as high as 95 wt%. Release studies of a hydrophilic model protein at a physiological temperature of 37 degrees C were performed at different pH values. High dependence of lipase release kinetics on hydrogel structure and the environmental pH was found, showing generally low release rates, lower in acidic media (pH 2.20) and higher at higher pHs (6.80). Lipase activity was retained even after treatment conditions that would provoke denaturation of the enzyme if it was not protected in the gel. The obtained hydrogels were found suitable for releasing therapeutic proteins in a controlled manner at specific sites in gastrointestinal tract.


Journal of Hazardous Materials | 2011

Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid

Nedeljko Milosavljević; Mirjana Ristić; Aleksandra A. Perić-Grujić; Jovanka M. Filipović; S. Strbac; Zlatko Rakočević; Melina Kalagasidis Krušić

Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn(2+) ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudo-second order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared-FTIR) and structural (SEM/EDX and atomic force microscopy-AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.


Drug Delivery | 2006

An Investigation into the Influence of Hydrogel Composition on Swelling Behavior and Drug Release from Poly(Acrylamide-co-Itaconic Acid) Hydrogels in Various Media

Marija Stanojević; Melina Kalagasidis Krušić; Jovanka M. Filipović; Jelena Parojčić; Mirjana Stupar

The hydrogels prepared by free radical copolymerization of acrylamide and itaconic acid were investigated with regard to their composition and crosslinking degree to find materials with satisfactory swelling and drug release properties. Samples were characterized by measuring the swelling behavior and in vitro release of paracetamol as a model drug in aqueous media with different pH values. The two-factor, three-level experimental design and response surface methodology were applied to statistically evaluate the influence of investigated factors.


Carbohydrate Polymers | 2014

Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols.

Kata Trifković; Nikola Milašinović; Verica Djordjević; Melina Kalagasidis Krušić; Zorica Knežević-Jugović; Viktor Nedović; Branko Bugarski

In this work chitosan microbeads were prepared by emulsion technique and loaded with thyme polyphenols by diffusion from an external aqueous solution of Thymus serpyllum L. The effects of concentrations of chitosan (1.5-3% (w/v)) and GA (glutaraldehyde) (0.1-0.4% (v/v)), as a crosslinking agent on the main properties of microbeads were assessed. The obtained microgel beads from ∼ 220 to ∼ 790 μm in diameter were exposed to controlled drying process at air (at 37 °C) after which they contracted to irregular shapes (∼ 70-230 μm). The loading of dried microbeads with polyphenols was achieved by swelling in the acidic medium. The swelling rate of microbeads decreased with the increase in GA concentration. Upon this rehydration, thyme polyphenols were effectively encapsulated (active load of 66-114 mg GAE g(beads)(-1)) and the microbeads recovered a spherical shape. Both, the increase in the amount of the crosslinking agent and the presence of polyphenols, contributed to a more pronounced surface roughness of microbeads. The release of encapsulated polyphenols in simulated gastrointestinal fluids was prolonged to 3h.


International Journal of Pharmaceutics | 2012

Controlled release of lipase from Candida rugosa loaded into hydrogels of N-isopropylacrylamide and itaconic acid

Nikola Milašinović; Zorica Knežević-Jugović; Nedeljko Milosavljević; Jovanka M. Filipović; Melina Kalagasidis Krušić

The series of poly(N-isopropylacrylamide-co-itaconic acid) hydrogels, with lipase from Candida rugosa as a model protein, were synthesized by free radical copolymerization. The composition of hydrogels was varied by monomers ratio, crosslinking agent concentration and amounts of lipase, which was loaded by in situ polymerization. All samples were characterized regarding morphology. The investigation of hydrogel swelling properties revealed their pH and temperature sensitive character. Protein loading efficiency, release profiles and the specific activity yield of the released lipase were also investigated as a function of hydrogel composition, protein content and pH, at the physiological temperature of 37 °C. Copolymers of N-isopropylacrylamide and itaconic acid presented high lipase loading efficiency. Another very important feature of these copolymers was that the protein release kinetic strongly depended on the pH value of the medium. The diffusion exponents values around 1 denoted that these hydrogel compositions could be adjusted to follow near zero-order kinetics. Namely, hydrogel formulations released low amounts of lipase at pH 2.20, but much higher released protein quantities were observed at pH 6.80 enabling these copolymers to be attractive candidates as site specific protein oral drug delivery systems.


Journal of Biomaterials Applications | 2015

Chitosan crosslinked microparticles with encapsulated polyphenols: Water sorption and release properties:

Kata Trifković; Nikola Milašinović; Verica Djordjević; Gordana Zdunić; Melina Kalagasidis Krušić; Zorica Knežević-Jugović; Katarina Šavikin; Viktor Nedović; Branko Bugarski

Chitosan–glutaraldehyde microparticles were produced by emulsion crosslinking method to be used as drug delivery system for polyphenols from Thymus serpyllum L. aqueous extract. The effect of preparation conditions, chitosan concentration (1.5–3% w/v), and glutaraldehyde/chitosan (GA/Ch) mass ratio (0.15–1.20) on water and polyphenols transport properties was investigated. Swelling ratio of dry particles (68–230 µm) in water ranged from 280% to 530%, depending on the formulation. The decrease in swelling was observed with increased GA/Ch mass ratio (i.e. crosslinking degree) at the same chitosan concentration, or with increased chitosan concentration at the same GA/Ch mass ratio. The increase in GA/Ch mass ratio was also manifested by increased particle compactness i.e. decreased size and reduced surface roughness. The sorption capacity for polyphenols seems to be a complex interplay of swelling behaviour and interactions chitosan–glutaraldehyde–polyphenols identified by Fourier transmission infrared analysis. An increase in crystallinity of chitosan was observed upon crosslinking with glutaraldehyde and encapsulation of polyphenols, as observed by X-ray diffraction analysis. The results obtained from release kinetics of selected polyphenolic compounds (caffeic acid, rosmarinic acid, total flavonoids, and total phenol content) showed that polyphenols were released at a lower amount (2–4 times) in water, but more rapidly (45–120 min) in comparison with the release in gastric followed by intestinal simulated fluid (SGF-SIF) (120–240 min). The experimental results of the time-dependent swelling in water and polyphenols release in both, water and SGF-SIF, were analyzed with several mathematical models. The results depicted Fickian diffusion as the water transport mechanism. In the case of polyphenols, only empirical Weibull model could be suggested for describing release kinetics.


New Journal of Chemistry | 2016

Cross-linking of highly methoxylated pectin with copper: the specific anion influence

Sanja Šešlija; Djordje Veljović; Melina Kalagasidis Krušić; Jasmina Stevanović; Sava J. Velickovic; Ivanka G. Popović

The aim of this work was to investigate the influence of specific anions on the cross-linking process of highly methoxylated pectin using the following copper salts CuSO4; Cu(C2H3O2)2; CuCl2; and Cu(NO3)2 wherein the initial salt concentrations were varied from 0.5 up to 10 g l−1. It was found that the anions affected the sorption capacity wherein the Cu2+ sorption capacity from the sulphate solution was the highest, while it decreased in the presence of CH3COO−, Cl− and NO3− ions, respectively. This difference was mostly pronounced at the higher initial salt concentrations (c0(Cu2+) > 2 g l−1). The obtained beads were characterized by FTIR, AAS, SEM/EDS microanalysis and mechanical compression tests up to 80% of deformation. The sorption data were applied to the Langmuir and Freundlich isotherm models and various calculated parameters confirmed the sulphate anion supportive nature in metal ion binding. The value of the Kf parameter for the cross-linking process of pectin in the presence of acetate, chloride and nitrate was approximately the same (Kf ≈ 0.027 g g−1), while it was higher in the presence of sulphate anions by more than 20% (Kf = 0.0352 g g−1). The predicted 1/n values (1/n 1, 1/n = 1 for the sulphate, nitrate and acetate, and chloride anions, respectively) were the quantitative confirmation of the specific interactions involved in the cross-linking mechanism caused by different anions. The established anion influence was in accordance with the typical ion-specific influence on macromolecules in aqueous systems proposed by Hofmeister.


BioMed Research International | 2014

Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions

Nikola Milašinović; Zorica Knežević-Jugović; Nedeljko Milosavljević; Marija Lučić Škorić; Jovanka M. Filipović; Melina Kalagasidis Krušić

Stimuli responsive pH- and temperature-sensitive hydrogel drug delivery systems, as those based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA), have been attracting much of the attention of the scientific community nowadays, especially in the field of drug release. By adjusting comonomer composition, the matrix is enabled to protect the incorporated protein in the highly acidic environment of upper gastrointestinal tract and deliver it in the neutral or slightly basic region of the lower intestine. The protein/poly(NiPAAm-co-IA) hydrogels were synthetized by free radical crosslinking copolymerization and were characterized concerning their swelling capability, mechanical properties, and morphology. The pore structure and sizes up to 1.90 nm allowed good entrapment of lipase molecules. Model protein, lipase from Candida rugosa, was entrapped within hydrogels upon mild conditions that provided its protection from harmful environmental influences. The efficiency of the lipase entrapment reached 96.7%, and was dependent on the initial concentration of lipase solution. The swelling of the obtained hydrogels in simulated pH and temperature of gastrointestinal tract, the lipase entrapment efficiency, and its release profiles from hydrogels were investigated as well.


The Scientific World Journal | 2014

Catalyzed Ester Synthesis Using Candida rugosa Lipase Entrapped by Poly(N-isopropylacrylamide-co-itaconic Acid) Hydrogel

Nikola Milašinović; Sonja M. Jakovetić; Zorica Knežević-Jugović; Nedeljko Milosavljević; Marija Lučić; Jovanka M. Filipović; Melina Kalagasidis Krušić

This study reports the synthesis of polymeric matrices based on N-isopropylacrylamide and itaconic acid and its application for immobilization of lipase from Candida rugosa. The lipase was immobilized by entrapment method. Free and immobilized lipase activities, pH and temperature optima, and storage stability were investigated. The optimum temperature for free and entrapped lipase was found to be 40 and 45°C, while the optimum pH was observed at pH 7 and 8, respectively. Both hydrolytic activity in an aqueous medium and esterolytic activity in an organic medium have been evaluated. Maximum reaction rate (V max) and Michaelis-Menten constants (K m) were also determined for immobilized lipase. Storage stability of lipase was increased as a result of immobilization process. Furthermore, the operational stability and reusability of the immobilized lipase in esterification reaction have been studied, and it was observed that after 10 cycles, the residual activity for entrapped lipase was as high as 50%, implying that the developed hydrogel and immobilized system could provide a promising solution for the flavor ester synthesis at the industrial scale.


Polymer | 2006

Copolymer hydrogels based on N-isopropylacrylamide and itaconic acid

Melina Kalagasidis Krušić; Jovanka M. Filipović

Collaboration


Dive into the Melina Kalagasidis Krušić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge