Melinda Burgess
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melinda Burgess.
Journal of Controlled Release | 2011
Sherry Y. Wu; Hsin-I Chang; Melinda Burgess; Nigel A.J. McMillan
Sustained vaginal delivery of siRNA has been precluded by the mucosal barrier lining the vaginal tract. In contrast to prior reports, we showed that conventional lipoplexes administered intravaginally are unable to reach the vaginal epithelium under normal physiological conditions. Here we have developed a novel alginate scaffold system containing muco-inert PEGylated lipoplexes to provide a sustained vaginal presence of lipoplexes in vivo and to facilitate the delivery of siRNA/oligonucleotides into the vaginal epithelium. These PEGylated lipoplex-entrapped alginate scaffolds (PLAS) were fabricated using a freeze-drying method and the entrapment efficiency, release rate, and efficacy were characterized. We demonstrated that the PLAS system had an entrapment efficiency of ~50%, which released PEGylated lipoplexes gradually both in vitro and in vivo. While the presence of alginate diminished the cell uptake efficiency of PEGylated lipoplexes in vitro, as expected, we showed a six-fold increase their uptake into the vaginal epithelium compared to existing transfection systems following intravaginal administration in mice. A significant knockdown of Lamin A/C level was also observed in vaginal tissues using siLamin A/C-containing PLAS system in vivo. Overall, our results indicated the potential of the biodegradable PLAS system for the sustained delivery of siRNA/oligonucleotides to vaginal epithelium.
Gene Therapy | 2011
Sherry Y. Wu; Akul Singhania; Melinda Burgess; Lisa Putral; Carl M. J. Kirkpatrick; N. M. Davies; Nigel A.J. McMillan
Small interfering RNA (siRNA) shows great promise in cancer therapy, but its effectiveness in vivo still remains a crucial issue for its transition into the clinics. Although the successful use of polyethylene glycol (PEG)ylated lipidic delivery systems have already been reported, most of the formulation procedures used are labour intensive and also result in unstable end products. We have previously developed a simple yet efficient hydration-of-freeze-dried-matrix (HFDM) method to entrap siRNA within lipid particles, in which the products exhibited superior stability. Here, we show that these HFDM-formulated particles are stable in the presence of serum and can deliver siRNA efficiently to tumours after intravenous administration. Using these particles, around 50% knockdown of the target gene expression was observed in tumours. With the use of siRNA targeting the E6/7 oncogenes expressed in cervical cancer, we showed a 50% reduction in tumour size. This level of tumour growth suppression was comparable to that achieved from cisplatin at the clinically used dose. Overall, our results demonstrate the feasibility of using HFDM-formulated particles to systematically administer E6/7-targeted siRNA for cervical cancer treatment. The simplicity of preparation procedure along with superior product stability obtained from our method offers an innovative approach for the in vivo delivery of siRNA.
Leukemia & Lymphoma | 2012
Melinda Burgess; Catherine Cheung; Lynne Chambers; Karunya Ravindranath; Gunjeet Minhas; Louise Knop; Peter Mollee; Nigel A.J. McMillan; Devinder Gill
Abstract Chronic lymphocytic leukemia (CLL) is predominantly a disease of accumulation rather than rapid proliferation. To date, no cell lines exist, as CLL cells undergo rapid apoptosis when cultured in vitro, suggesting that a favorable in vivo microenvironment is required. To identify survival signals we cultured primary CLL peripheral blood mononuclear cells (PBMCs) at high density, which has previously been shown to dramatically improve survival. Using antibody arrays we measured the level of 42 cytokines in culture supernatants and showed that inerleukin-6 (IL-6), IL-8, CXCL2 and CCL2 were highly up-regulated in culture. This is the first report to describe a role for CCL2 and CXCL2 in CLL cell survival. Importantly, CXCL2, IL-6 and IL-8 were significantly up-regulated in primary patient plasma. The addition of either CXCL2 or CCL2 enhanced CLL cell survival, while antibodies blocking these chemokines reduced survival. Co-culture of CLL cells and PBMC accessory cells separated by transwells provided a similar degree of survival protection compared to normal culture, whereas CLL cells cultured alone died rapidly. Interestingly, CCL2 and CXCL2 appeared to be produced by CLL cells but only when co-cultured with accessory cells. Thus, we speculate that accessory cells release soluble factors that promote the production of these pro-survival chemokines from CLL cells and physical interactions are not required. Our data support the concept that the CLL microenvironment is critical, and suggests that soluble factors are more important than physical interactions.
Nanomedicine: Nanotechnology, Biology and Medicine | 2010
Tathagata Dutta; Melinda Burgess; Nigel A.J. McMillan; Harendra S. Parekh
UNLABELLED Although small interfering RNA (siRNA) treatment holds great promise for the treatment of cancers, the field has been held back by the availability of suitable delivery vehicles. For cervical cancer the E6 and E7 oncogenes are ideal siRNA targets for treatment. The purpose of the present study was to explore the potential of dendrosomes for the delivery of siRNA targeting E6 and E7 proteins of cervical cancer cells in vitro. Optimization of dendrimer generation and nitrogen-to-phosphate (N/P) ratio was carried out using dendrimer-fluorescein isothiocyanate oligo complexes. The optimized N/P ratios were used in formulating complexes between dendrimers and siRNA targeting green fluorescence protein (siGFP). Although formulation 4D100 (dendrimer-siRNA complex) displayed the highest GFP knockdown, it was also found to be highly toxic to cells. In the final formulation 4D100 was encapsulated into dendrosomes so as to mask these toxic effects. The optimized dendrosomal formulation (DF), DF3 was found to possess a siGFP-entrapment efficiency of 49.76% +/- 1.62%, vesicle size of 154 +/- 1.73 nm, and zeta potential of +3.21 +/- 0.07 mV. The GFP knockdown efficiency of DF3 (dendrosome) was found to be almost identical to that of 4D100, but the former was completely nontoxic to the cells. DF3 containing siRNA against E6 and E7 was found to knock down the target genes considerably, as compared with the other formulations tested. Our results imply that dendrosomes hold potential for the delivery of siRNA and that a suitable targeting strategy could be useful for applications in vivo. FROM THE CLINICAL EDITOR siRNA treatment holds great promise for the treatment of cancers, but overall, the availability of suitable delivery vehicles remains a major issue. The purpose of this study was to explore the potential of dendrosomes for the delivery of siRNA targeting specific proteins in cervical cancer cells in vitro. The results suggest that dendrosomes hold potential for the delivery of siRNA and a suitable targeting strategy could be useful for applications in vivo.
Molecular therapy. Nucleic acids | 2013
Jana McCaskill; Richa Singhania; Melinda Burgess; Rachel E. Allavena; Sherry Y. Wu; Antje Blumenthal; Nigel A.J. McMillan
RNA interference (RNAi) may provide a therapeutic solution to many pulmonary epithelium diseases. However, the main barrier to the clinical use of RNAi remains the lack of efficient delivery vectors. Research has mainly concentrated on the intranasal route of delivery of short interfering RNA (siRNA) effector molecules for the treatment of respiratory diseases. However, this may be complicated in a diseased state due to the increased fluid production and tissue remodeling. Therefore, we investigated our hydration of a freeze-dried matrix (HFDM) formulated liposomes for systemic delivery to the lung epithelium. Here, we show that 45 ± 2% of epithelial murine lung cells receive siRNA delivery upon intravenous (IV) liposomal administration. Furthermore, we demonstrate that liposomal siRNA delivery resulted in targeted gene and protein knockdown throughout the lung, including lung epithelium. Taken together, this is the first description of lung epithelial delivery via cationic liposomes, and provides a proof of concept for the use of IV liposomal RNAi delivery to specifically knockdown targeted genes in the respiratory system. This approach may provide an attractive alternate therapeutic delivery strategy for the treatment of lung epithelium diseases.
Clinical Cancer Research | 2013
Melinda Burgess; Devinder Gill; Richa Singhania; Catherine Cheung; Lynne Chambers; Brent A. Renyolds; Louise Smith; Peter Mollee; Nicholas A. Saunders; Nigel A.J. McMillan
Purpose: Despite advances in the treatment of chronic lymphocytic leukemia (CLL), the disease remains incurable with standard therapies and relapse is inevitable. A growing body of evidence indicates that alterations in the adhesion properties of neoplastic cells play a pivotal role in the development and progression of CLL. Experimental Design: The expression of 71 cell surface molecules was examined on CLL peripheral blood mononuclear cells (PBMCs) over 3 weeks in culture. The most highly upregulated marker, CD62L, was examined further for expression on CD5+/CD19+ CLL cells in vitro and in lymph node and bone marrow biopsies. The prosurvival role of CD62L was examined using a functional blocking antibody and therapeutic potential evaluated by comparison with current chemotherapy agents. Results: Blocking CD62L resulted in apoptosis of CLL cells but not PBMCs from healthy donors suggesting a novel role for CD62L in CLL cell survival. The beneficial effect of coculturing CLL cells with bone marrow stromal cells or endothelial cells does not protect CLL cells from anti-CD62L–related toxicity. Moreover, combining fludarabine or mafosfamide with the anti-CD62L in vitro produced an additive effect both with and without stromal cells. Conclusion: This is the first reported data showing that blocking the activation and homing marker, CD62L, regulates CLL cell survival in vitro. These data also suggest that therapeutic antibodies against CD62L may provide additional clinical benefit to patients with CLL receiving current standard chemotherapy protocols. Clin Cancer Res; 19(20); 5675–85. ©2013 AACR.
Cancer Gene Therapy | 2011
Wenyi Gu; Elizabeth Payne; Surong Sun; Melinda Burgess; Nigel A.J. McMillan
RNA interference (RNAi)-based gene silencing is widely used in laboratories for gene function studies and also holds a great promise for developing treatments for diseases. However, in vivo delivery of RNAi therapy remains a key issue. Lentiviral vectors have been employed for stable gene transfer and gene therapy and therefore are expected to deliver a stable and durable RNAi therapy. But this does not seem to be true in some disease models. Here, we showed that lentivirus delivered short-hairpin RNA (shRNA) against human papillomavirus (HPV) E6/E7 oncogenes were effective for only 2 weeks in a cervical cancer model. However, using this vector to carry two copies of the same shRNA or two shRNAs targeting at two different but closely related genes (HPV E6 and vascular endothelial growth factor) was more effective at silencing the gene targets and inhibiting cell or even tumor growth than their single shRNA counterparts. The cancer cells treated with dual shRNA were also more sensitive to chemotherapeutic drugs than single shRNA-treated cells. These results suggest that a multi-shRNA strategy may be a more attractive approach for developing an RNAi therapy for this cancer.
Oncotarget | 2016
Eleni Topkas; Na Cai; A. Cumming; Mehlika Hazar-Rethinam; Orla M. Gannon; Melinda Burgess; Nicholas A. Saunders; Liliana Endo-Munoz
Osteosarcoma (OS) accounts for 56% of malignant bone cancers in children and adolescents. Patients with localized disease rarely develop metastasis; however, pulmonary metastasis occurs in approximately 50% of patients and leads to a 5-year survival rate of only 10–20%. Therefore, identifying the genes and pathways involved in metastasis, as new therapeutic targets, is crucial to improve long-term survival of OS patients. Novel markers that define metastatic OS were identified using comparative transcriptomic analyses of two highly metastatic (C1 and C6) and two poorly metastatic clonal variants (C4 and C5) isolated from the metastatic OS cell line, KHOS. Using this approach, we determined that the metastatic phenotype correlated with overexpression of thioredoxin reductase 2 (TXNRD2) or vascular endothelial growth factor (VEGF). Validation in patient biopsies confirmed TXNRD2 and VEGF targets were highly expressed in 29–42% of metastatic OS patient biopsies, with no detectable expression in non-malignant bone or samples from OS patients with localised disease. Auranofin (AF) was used to selectively target and inhibit thioredoxin reductase (TrxR). At low doses, AF was able to inhibit TrxR activity without a significant effect on cell viability whereas at higher doses, AF could induce ROS-dependent apoptosis. AF treatment, in vivo, significantly reduced the development of pulmonary metastasis and we provide evidence that this effect may be due to an AF-dependent increase in cellular ROS. Thus, TXNRD2 may represent a novel druggable target that could be deployed to reduce the development of fatal pulmonary metastases in patients with OS.
Oncogene | 2017
Melinda Burgess; Sally Mapp; Roberta Mazzieri; Catherine Cheung; Lynne Chambers; Stephen R. Mattarollo; Peter Mollee; Devinder Gill; Nicholas A. Saunders
Resistance to therapeutic antibodies in chronic lymphocytic leukaemia (CLL) is common. In this study, we show that therapeutic antibodies against CD62L (CD62L-Ab) or CD20 (obinutuzumab) were able to induce antibody-dependent cell-mediated cytotoxicity (ADCC) and phagocytosis (ADP) in primary cultures of CLL cells. CLL cells derived from patients with active disease requiring treatment displayed resistance to these antibodies, whereas patients with stable disease were sensitive. Using enrichment strategies and transcriptomic analyses, we show that antibody-dependent tumour cell killing was FcγR-dependent and mediated by macrophages. Moreover, we show that resistance cannot be attributed to total numbers or established subtypes of monocytes/macrophages, or the efficiency with which they bind an immune complex. Rather, ADCC/ADP resistance was due to reduced signalling activity through the activating FcγRs resulting in the transfer of dominance to the inhibitory FcγRIIb within macrophages. Most significantly, we show that resistance is an actionable event that could be reversed using inhibitors of FcγRIIb signalling in primary cultures of CLL cells that were previously insensitive to obinutuzumab or CD62L-Ab.
Biomacromolecules | 2011
Nghia P. Truong; Zhongfan Jia; Melinda Burgess; Liz Payne; Nigel A.J. McMillan; Michael J. Monteiro