Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda Larsen is active.

Publication


Featured researches published by Melinda Larsen.


Journal of Cell Science | 2008

Extracellular matrix dynamics in development and regenerative medicine

William P. Daley; Sarah B. Peters; Melinda Larsen

The extracellular matrix (ECM) regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Far from being a static structure, the ECM is constantly undergoing remodeling – i.e. assembly and degradation – particularly during the normal processes of development, differentiation and wound repair. When misregulated, this can contribute to disease. ECM assembly is regulated by the 3D environment and the cellular tension that is transmitted through integrins. Degradation is controlled by complex proteolytic cascades, and misregulation of these results in ECM damage that is a common component of many diseases. Tissue engineering strives to replace damaged tissues with stem cells seeded on synthetic structures designed to mimic the ECM and thus restore the normal control of cell function. Stem cell self-renewal and differentiation is influenced by the 3D environment within the stem cell niche. For tissue-engineering strategies to be successful, the intimate dynamic relationship between cells and the ECM must be understood to ensure appropriate cell behavior.


Nature | 2003

Fibronectin requirement in branching morphogenesis

Takayoshi Sakai; Melinda Larsen; Kenneth M. Yamada

Many organs, including salivary glands, lung and kidney, are formed during embryonic development by epithelial branching. In branching morphogenesis, repetitive epithelial cleft and bud formation create the complex three-dimensional branching structures characteristic of many organs. Although the mechanisms are poorly understood, one might involve the site-specific accumulation of some regulatory protein. Here we show that the extracellular matrix protein fibronectin is essential for cleft formation during the initiation of epithelial branching. Fibronectin messenger RNA and fibrils appeared transiently and focally in forming cleft regions of submandibular salivary-gland epithelia, accompanied by an adjacent loss of cadherin localization. Decreasing the fibronectin concentration by using small interfering RNA and inhibition by anti-fibronectin or anti-integrin antibodies blocked cleft formation and branching. Exogenous fibronectin accelerated cleft formation and branching. Similar effects of fibronectin suppression and augmentation were observed in developing lung and kidney. Mechanistic studies revealed that fibrillar fibronectin can induce cell–matrix adhesions on cultured human salivary epithelial cells with a local loss of cadherins at cell–cell junctions. Thus, fibronectin expression is required for cleft formation in branching morphogenesis associated with the conversion of cell–cell adhesions to cell–matrix adhesions.


Developmental Biology | 1975

Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix

Robert M. Pratt; Melinda Larsen; M.C. Johnston

Neural crest cells in the cranial region of the chick embryo initially migrate into a cell-free space between the head ectoderm and mesoderm. The primary objective of the present study was to define the nature of the matrix in this cell-free space. In ovo administration of various labeled compounds showed that the cell-free space became heavily labeled with glucosamine between stages 9 and 10 with little or no incorporation of fucose or sulfate. The results obtained by autoradiography and biochemical analysis of labeled macromolecules selectively extracted from this cell-free space suggest that hyaluronic acid is a major component. The appearance of hyaluronic acid correlates with an increase in size of the cell-free space and crest cell migration.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue

Michael J. Gerdes; Christopher Sevinsky; Anup Sood; Sudeshna Adak; Musodiq O. Bello; Alexander Bordwell; Ali Can; Alex David Corwin; Sean Richard Dinn; Robert John Filkins; Denise Hollman; Vidya Pundalik Kamath; Sireesha Kaanumalle; Kevin Bernard Kenny; Melinda Larsen; Michael Lazare; Qing Li; Christina Lowes; Colin Craig McCulloch; Elizabeth McDonough; Michael Christopher Montalto; Zhengyu Pang; Jens Rittscher; Alberto Santamaria-Pang; Brion Daryl Sarachan; Maximilian Lewis Seel; Antti Seppo; Kashan Shaikh; Yunxia Sui; Jingyu Zhang

Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.


Development | 2005

FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis

Zachary Steinberg; Christopher Myers; Vernon M. Heim; Colin A. Lathrop; Ivan T. Rebustini; Julian S. Stewart; Melinda Larsen; Matthew P. Hoffman

Branching morphogenesis of mouse submandibular glands is regulated by multiple growth factors. Here, we report that ex vivo branching of intact submandibular glands decreases when either FGFR2 expression is downregulated or soluble recombinant FGFR2b competes out the endogenous growth factors. However, a combination of neutralizing antibodies to FGF1, FGF7 and FGF10 is required to inhibit branching in the intact gland, suggesting that multiple FGF isoforms are required for branching. Exogenous FGFs added to submandibular epithelial rudiments cultured without mesenchyme induce distinct morphologies. FGF7 induces epithelial budding, whereas FGF10 induces duct elongation, and both are inhibited by FGFR or ERK1/2 signaling inhibitors. However, a PI3-kinase inhibitor also decreases FGF7-mediated epithelial budding, suggesting that multiple signaling pathways exist. We immunolocalized FGF receptors and analyzed changes in FGFR, FGF and MMP gene expression to identify the mechanisms of FGF-mediated morphogenesis. FGFR1b and FGFR2b are present throughout the epithelium, although FGFR1b is more highly expressed around the periphery of the buds and the duct tips. FGF7 signaling increases FGFR1b and FGF1 expression, and MMP2 activity, when compared with FGF10, resulting in increased cell proliferation and expansion of the epithelial bud, whereas FGF10 stimulates localized proliferation at the tip of the duct. FGF7- and FGF10-mediated morphogenesis is inhibited by an MMP inhibitor and a neutralizing antibody to FGF1, suggesting that both FGF1 and MMPs are essential downstream mediators of epithelial morphogenesis. Taken together, our data suggests that FGFR2b signaling involves a regulatory network of FGFR1b/FGF1/MMP2 expression that mediates budding and duct elongation during branching morphogenesis.


Development | 2002

Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF- dependent mechanisms

Matthew P. Hoffman; Benjamin L. Kidder; Zachary Steinberg; Saba Lakhani; Susan Ho; Hynda K. Kleinman; Melinda Larsen

Analyses of gene expression profiles at five different stages of mouse submandibular salivary gland development provide insight into gland organogenesis and identify genes that may be critical at different stages. Genes with similar expression profiles were clustered, and RT-PCR was used to confirm the developmental changes. We focused on fibroblast growth factor receptor 1 (FGFR1), as its expression is highest early in gland development. We extended our array results and analyzed the developmental expression patterns of other FGFR and FGF isoforms. The functional significance of FGFR1 was confirmed by submandibular gland organ culture. Antisense oligonucleotides decreased expression of FGFR1 and reduced branching morphogenesis of the glands. Inhibiting FGFR1 signaling with SU5402, a FGFR1 tyrosine kinase inhibitor, reduced branching morphogenesis. SU5402 treatment decreased cell proliferation but did not increase apoptosis. Fgfr, Fgf and Bmp gene expression was localized to either the mesenchyme or the epithelium by PCR, and then measured over time by real time PCR after SU5402 treatment. FGFR1 signaling regulates Fgfr1, Fgf1, Fgf3 and Bmp7 expression and indirectly regulates Fgf7, Fgf10 and Bmp4. Exogenous FGFs and BMPs added to glands in culture reveal distinct effects on gland morphology. Glands cultured with SU5402 were then rescued with exogenous BMP7, FGF7 or FGF10. Taken together, our results suggest specific FGFs and BMPs play reciprocal roles in regulating branching morphogenesis and FGFR1 signaling plays a central role by regulating both FGF and BMP expression.


Journal of Cell Science | 2006

Cell and fibronectin dynamics during branching morphogenesis

Melinda Larsen; Cindy Wei; Kenneth M. Yamada

Branching morphogenesis is a dynamic developmental process shared by many organs, but the mechanisms that reorganize cells during branching morphogenesis are not well understood. We hypothesized that extensive cell rearrangements are involved, and investigated cell migration using two-color confocal time-lapse microscopy to image cell and extracellular-matrix dynamics in developing salivary glands. We labeled submandibular salivary gland (SMG) epithelial cells with green fluorescent protein and matrix with fluorescent fibronectin. Surprisingly, we observed substantial, rapid and relatively random migration of individual epithelial cells during branching morphogenesis. We predicted that cell migration would decrease after formation of acini and, indeed, found that rapid cell movements do not occur in SMG from newborn mice. However, in embryonic SMG epithelial cells, we observed an absence of choreographed cell migration, indicating that patterned cell migration alone cannot explain the highly ordered process of branching morphogenesis. We therefore hypothesized a role for directional fibronection assembly in branching. Washout and pulse-chase experiments revealed that older fibronectin accumulates at the base of the clefts and translocates inwards as a wedge, with newer fibronectin assembling behind it. These findings identify a new mechanism for branching morphogenesis involving directional fibronectin translocation superimposed on individual cell dynamics.


Nature Reviews Molecular Cell Biology | 2003

PHOSPHATASES IN CELL-MATRIX ADHESION AND MIGRATION

Melinda Larsen; Michel L. Tremblay; Kenneth M. Yamada

Many proteins that have been implicated in cell–matrix adhesion and cell migration are phosphorylated, which regulates their folding, enzymatic activities and protein–protein interactions. Although modulation of cell motility by kinases is well known, increasing evidence confirms that phosphatases are essential at each stage of the migration process. Phosphatases can control the formation and maintenance of the actin cytoskeleton, regulate small GTPase molecular switches, and modulate the dynamics of matrix–adhesion interaction, actin contraction, rear release and migratory directionality.


Developmental Biology | 2003

Role of PI 3-kinase and PIP3 in submandibular gland branching morphogenesis

Melinda Larsen; Matthew P. Hoffman; Takayoshi Sakai; Justin C. Neibaur; Jonathan M. Mitchell; Kenneth M. Yamada

The mouse submandibular gland (SMG) epithelium undergoes extensive morphogenetic branching during embryonic development as the first step in the establishment of its glandular structure. However, the specific signaling pathways required for SMG branching morphogenesis are not well understood. Using E13 mouse SMG organ cultures, we showed that inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase), wortmannin and LY294002, substantially inhibited branching morphogenesis in SMG. Branching morphogenesis of epithelial rudiments denuded of mesenchyme was inhibited similarly, indicating that PI 3-kinase inhibitors act directly on the epithelium. Immunostaining and Western analysis demonstrated that the p85 isoform of PI 3-kinase is expressed in epithelium at levels higher than in the mesenchyme. A target of PI 3-kinase, Akt/protein kinase B (PKB), showed decreased phosphorylation at Ser(473) by Western analysis in the presence of PI 3-kinase inhibitors. The major lipid product of PI 3-kinase, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), was added exogenously to SMG via a membrane-transporting carrier in the presence of PI 3-kinase inhibitors and was found to stimulate cleft formation, the first step of branching morphogenesis. Together, these data indicate that PI 3-kinase plays a role in the regulation of epithelial branching morphogenesis in mouse SMG acting through a PIP(3) pathway.


Developmental Biology | 2009

Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis.

William P. Daley; Kathryn M. Gulfo; Sharon J. Sequeira; Melinda Larsen

Cleft formation is the initial step in submandibular salivary gland (SMG) branching morphogenesis, and may result from localized actomyosin-mediated cellular contraction. Since ROCK regulates cytoskeletal contraction, we investigated the effects of ROCK inhibition on mouse SMG ex vivo organ cultures. Pharmacological inhibitors of ROCK, isoform-specific ROCK I but not ROCK II siRNAs, as well as inhibitors of myosin II activity stalled clefts at initiation. This finding implies the existence of a mechanochemical checkpoint regulating the transition of initiated clefts into progression-competent clefts. Downstream of the checkpoint, clefts are rendered competent through localized assembly of fibronectin promoted by ROCK I/myosin II. Cleft progression is primarily mediated by ROCK I/myosin II-stimulated cell proliferation with a contribution from cellular contraction. Furthermore, we demonstrate that FN assembly itself promotes epithelial proliferation and cleft progression in a ROCK-dependent manner. ROCK also stimulates a proliferation-independent negative feedback loop to prevent further cleft initiations. These results reveal that cleft initiation and progression are two physically and biochemically distinct processes.

Collaboration


Dive into the Melinda Larsen's collaboration.

Top Co-Authors

Avatar

James Castracane

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Kenneth M. Yamada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Deirdre A. Nelson

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon J. Sequeira

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

David R. Rowley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

William P. Daley

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Sarah B. Peters

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Shayoni Ray

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Truong D. Dang

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge