Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda M. Peters is active.

Publication


Featured researches published by Melinda M. Peters.


The Journal of Neuroscience | 2011

CX3CR1 Deficiency Leads to Impairment of Hippocampal Cognitive Function and Synaptic Plasticity

Justin T. Rogers; Josh M. Morganti; Adam D. Bachstetter; Charles Hudson; Melinda M. Peters; Bethany Grimmig; Edwin J. Weeber; Paula C. Bickford; Carmelina Gemma

The protective/neurotoxic role of fractalkine (CX3CL1) and its receptor CX3C chemokine receptor 1 (CX3CR1) signaling in neurodegenerative disease is an intricate and highly debated research topic and it is becoming even more complicated as new studies reveal discordant results. It appears that the CX3CL1/CX3CR1 axis plays a direct role in neurodegeneration and/or neuroprotection depending on the CNS insult. However, all the above studies focused on the role of CX3CL1/CX3CR1 signaling in pathological conditions, ignoring the relevance of CX3CL1/CX3CR1 signaling under physiological conditions. No approach to date has been taken to decipher the significance of defects in CX3CL1/CX3CR1 signaling in physiological condition. In the present study we used CX3CR1−/−, CX3CR1+/−, and wild-type mice to investigate the physiological role of CX3CR1 receptor in cognition and synaptic plasticity. Our results demonstrate for the first time that mice lacking the CX3CR1 receptor show contextual fear conditioning and Morris water maze deficits. CX3CR1 deficiency also affects motor learning. Importantly, mice lacking the receptor have a significant impairment in long-term potentiation (LTP). Infusion with IL-1β receptor antagonist significantly reversed the deficit in cognitive function and impairment in LTP. Our results reveal that under physiological conditions, disruption in CX3CL1 signaling will lead to impairment in cognitive function and synaptic plasticity via increased action of IL-1β.


Neurobiology of Learning and Memory | 2006

Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice

Shenfeng Qiu; Kimberly M. Korwek; Adeola R. Pratt-Davis; Melinda M. Peters; Mica Y. Bergman; Edwin J. Weeber

The heterozygote reeler mouse (HRM) shows many neuroanatomical and biochemical features that are also present in some human cognitive disorders, such as schizophrenia. In the present study, hippocampal dependent plasticity and cognitive function of the HRM were characterized in detail in an attempt to reveal phenotypic functional differences that result from Reelin haploinsufficiency. The HRM and wild type mice show similar levels of overall activity, coordination, thermal nociception, startle responses, and anxiety-like behavior. In addition, both genotypes show similar shock threshold, identical cued freezing behavior and comparable spatial learning in Morris water maze tasks. However, a significant reduction in contextual fear conditioned learning was observed in the HRM. Electrophysiological studies in hippocampal CA1 synapses revealed a plethora of differences between genotypes. The HRM exhibits reduced field excitatory postsynaptic potentials in responses to similar synaptic inputs, lowered paired pulse facilitation ratio and impaired long-term depression and tetanus-induced long-term potentiation (LTP). Also, deficits were detected in LTP elicited by theta burst stimulation or by a whole cell pairing protocol. These physiologic differences could not be accounted for by changes in the overall amount of glutamate receptor subunits. In addition, it was determined that network-driven excitatory and inhibitory activities recorded in CA1 pyramidal neurons showed that the HRM had comparable amplitude and frequency of spontaneous excitatory postsynaptic currents, but a marked reduction in spontaneous inhibitory postsynaptic currents. Thus, the HRM exhibits a specific hippocampal-dependent learning deficit accompanied with a pronounced impairment of hippocampal plasticity and functional inhibitory innervation.


The Journal of Neuroscience | 2010

Neuronal LRP1 Knockout in Adult Mice Leads to Impaired Brain Lipid Metabolism and Progressive, Age-Dependent Synapse Loss and Neurodegeneration

Qiang Liu; Justin Trotter; Juan Zhang; Melinda M. Peters; Hua Cheng; Jianxin Bao; Xianlin Han; Edwin J. Weeber; Guojun Bu

The vast majority of Alzheimers disease (AD) cases are late onset with progressive synapse loss and neurodegeneration. Although the amyloid hypothesis has generated great insights into the disease mechanism, several lines of evidence indicate that other risk factors might precondition the brain to amyloid toxicity. Here, we show that the deletion of a major lipoprotein receptor, low-density lipoprotein receptor-related protein 1 (LRP1), in forebrain neurons in mice leads to a global defect in brain lipid metabolism characterized by decreased brain levels of cholesterol, sulfatide, galactosylceramide, and triglyceride. These lipid deficits correlate with progressive, age-dependent dendritic spine degeneration, synapse loss, neuroinflammation, memory loss, and eventual neurodegeneration. We further show that the levels of glutamate receptor subunits NMDA receptor 1 and Glu receptor 1 are selectively reduced in LRP1 forebrain knock-out mice and in LRP1 knockdown neurons, which is partially rescued by restoring neuronal cholesterol. Together, these studies support a critical role for LRP1 in maintaining brain lipid homeostasis and associated synaptic and neuronal integrity, and provide important insights into the pathophysiological mechanisms in AD.


Learning & Memory | 2011

Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density

Justin T. Rogers; Ian Rusiana; Justin Trotter; Lisa Zhao; Erika Donaldson; Daniel T. S. Pak; Lenard W. Babus; Melinda M. Peters; Jessica L. Banko; Pascale Chavis; G. William Rebeck; Hyang-Sook Hoe; Edwin J. Weeber

Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive function; however, the in vivo effect of enhanced Reelin signaling on cognitive function and synaptic plasticity in wild-type mice is unknown. The present studies test the hypothesis that in vivo enhancement of Reelin signaling can alter synaptic plasticity and ultimately influence processes of learning and memory. Purified recombinant Reelin was injected bilaterally into the ventricles of wild-type mice. We demonstrate that a single in vivo injection of Reelin increased activation of adaptor protein Disabled-1 and cAMP-response element binding protein after 15 min. These changes correlated with increased dendritic spine density, increased hippocampal CA1 long-term potentiation (LTP), and enhanced performance in associative and spatial learning and memory. The present study suggests that an acute elevation of in vivo Reelin can have long-term effects on synaptic function and cognitive ability in wild-type mice.


Learning & Memory | 2008

Activation of exchange protein activated by cyclic-AMP enhances long-lasting synaptic potentiation in the hippocampus

Jennifer N. Gelinas; Jessica L. Banko; Melinda M. Peters; Eric Klann; Edwin J. Weeber; Peter V. Nguyen

cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term potentiation (LTP) of synaptic strength. However, cAMP may also initiate signaling via a guanine nucleotide exchange protein directly activated by cAMP (Epac). The role of Epac in hippocampal synaptic plasticity is unknown. We found that in area CA1 of mouse hippocampal slices, activation of Epac enhances maintenance of LTP without affecting basal synaptic transmission. The persistence of this form of LTP requires extracellular signal-regulated protein kinase (ERK) and new protein synthesis, but not transcription. Because ERK is involved in translational control of long-lasting plasticity and memory, our data suggest that Epac is a crucial link between cAMP and ERK during some forms of protein synthesis-dependent LTP. Activation of Epac represents a novel signaling pathway for rapid regulation of the stability of enduring forms of LTP and, perhaps, of hippocampus- dependent long-term memories.


Journal of Molecular Recognition | 2009

Atomic force microscopy analysis of central nervous system cell morphology on silicon carbide and diamond substrates.

Christopher L. Frewin; Mark J. Jaroszeski; Edwin J. Weeber; K. E. Muffly; Ashok Kumar; Melinda M. Peters; A. Oliveros; Stephen E. Saddow

Brain machine interface (BMI) devices offer a platform that can be used to assist people with extreme disabilities, such as amyotrophic lateral sclerosis (ALS) and Parkinsons disease. Silicon (Si) has been the material of choice used for the manufacture of BMI devices due to its mechanical strength, its electrical properties and multiple fabrication techniques; however, chronically implanted BMI devices have usually failed within months of implantation due to biocompatibility issues and the fact that Si does not withstand the harsh environment of the body. Single crystal cubic silicon carbide (3C‐SiC) and nanocrystalline diamond (NCD) are semiconductor materials that have previously shown good biocompatibility with skin and bone cells. Like Si, these materials have excellent physical characteristics, good electrical properties, but unlike Si, they are chemically inert. We have performed a study to evaluate the general biocompatibility levels of all of these materials through the use of in vitro techniques. H4 human neuroglioma and PC12 rat pheochromocytoma cell lines were used for the study, and polystyrene (PSt) and amorphous glass were used as controls or for morphological comparison. MTT [3‐(4,5‐Dimethylthiazol‐2‐Yl)‐2,5‐Diphenyltetrazolium Bromide] assays were performed to determine general cell viability with each substrate and atomic force microscopy (AFM) was used to quantify the general cell morphology on the substrate surface along with the substrate permissiveness to lamellipodia extension. 3C‐SiC was the only substrate tested to have good viability and superior lamellipodia permissiveness with both cell lines, while NCD showed a good level of viability with the neural H4 line but a poor viability with the PC12 line and lower permissiveness than 3C‐SiC. Explanations pertaining to the performance of each substrate with both cell lines are presented and discussed along with future work that must be performed to further evaluate specific cell reactions on these substrates. Copyright


Molecular Neurodegeneration | 2006

Altered hippocampus synaptic function in selenoprotein P deficient mice

Melinda M. Peters; Kristina E. Hill; Raymond F. Burk; Edwin J. Weeber

Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains its selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp) has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1) results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/-) mice and wild type littermate controls (Sepp1(+/+)) fed a high-selenium diet (1 mg Se/kg) were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/-) mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/-) mice on a 1 mg Se/kg diet and Sepp1(+/+) mice fed a selenium-deficient (0 mg Se/kg) diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS.


PLOS ONE | 2011

A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP51

John C. O'Leary; Sheetal Dharia; Laura J. Blair; Sarah Brady; Amelia G. Johnson; Melinda M. Peters; Joyce Cheung-Flynn; Marc B. Cox; Gabriel A. de Erausquin; Edwin J. Weeber; Umesh K. Jinwal; Chad A. Dickey

The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naïve animals treated with classical antidepressants FKBP5−/− mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies.


Journal of Psychopharmacology | 2013

Reelin supplementation recovers sensorimotor gating, synaptic plasticity and associative learning deficits in the heterozygous reeler mouse

Justin T. Rogers; Lisa Zhao; Justin Trotter; Ian Rusiana; Melinda M. Peters; Qingyou Li; Erika Donaldson; Jessica L. Banko; Kathleen E Keenoy; G. William Rebeck; Hyang-Sook Hoe; Gabriella D’Arcangelo; Edwin J. Weeber

The lipoprotein receptor ligand Reelin is important for the processes of normal synaptic plasticity, dendritic morphogenesis, and learning and memory. Heterozygous reeler mice (HRM) show many neuroanatomical, biochemical, and behavioral features that are associated with schizophrenia. HRM show subtle morphological defects including reductions in dendritic spine density, altered synaptic plasticity and behavioral deficits in associative learning and memory and pre-pulse inhibition. The present studies test the hypothesis that in vivo elevation of Reelin levels can rescue synaptic and behavioral phenotypes associated with HRM. We demonstrate that a single in vivo injection of Reelin increases GAD67 expression and alters dendritic spine morphology. In parallel we observed enhancement of hippocampal synaptic function and associative learning and memory. Reelin supplementation also increases pre-pulse inhibition. These results suggest that characteristics of HRM, similar to those observed in schizophrenia, are sensitive to Reelin levels and can be modified with Reelin supplementation in male and female adults.


PLOS ONE | 2011

Adeno-Associated Virus-Mediated Rescue of the Cognitive Defects in a Mouse Model for Angelman Syndrome

Jennifer L. Daily; Kevin Nash; Umesh K. Jinwal; Todd E. Golde; Justin T. Rogers; Melinda M. Peters; Rebecca D. Burdine; Chad A. Dickey; Jessica L. Banko; Edwin J. Weeber

Angelman syndrome (AS), a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII) regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr286 and Thr305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV) vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.

Collaboration


Dive into the Melinda M. Peters's collaboration.

Top Co-Authors

Avatar

Edwin J. Weeber

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Jessica L. Banko

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Justin T. Rogers

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Justin Trotter

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Chad A. Dickey

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Lisa Zhao

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Umesh K. Jinwal

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Amelia G. Johnson

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Erika Donaldson

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge