Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda Sosa is active.

Publication


Featured researches published by Melinda Sosa.


Tuberculosis | 2009

High Throughput Screening for Inhibitors of Mycobacterium tuberculosis H37Rv

Subramaniam Ananthan; Ellen R. Faaleolea; Robert C. Goldman; Judith V. Hobrath; Cecil D. Kwong; Barbara E. Laughon; Joseph A. Maddry; Alka Mehta; Lynn Rasmussen; Robert C. Reynolds; John A. Secrist; Nice Shindo; Dustin N. Showe; Melinda Sosa; William J. Suling; E. Lucile White

There is an urgent need for the discovery and development of new antitubercular agents that target new biochemical pathways and treat drug resistant forms of the disease. One approach to addressing this need is through high-throughput screening of medicinally relevant libraries against the whole bacterium in order to discover a variety of new, active scaffolds that will stimulate new biological research and drug discovery. Through the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (www.taacf.org), a large, medicinally relevant chemical library was screened against M. tuberculosis strain H37Rv. The screening methods and a medicinal chemistry analysis of the results are reported herein.


Tuberculosis | 2009

Antituberculosis Activity of the Molecular Libraries Screening Center Network Library

Joseph A. Maddry; Subramaniam Ananthan; Robert C. Goldman; Judith V. Hobrath; Cecil D. Kwong; Clinton Maddox; Lynn Rasmussen; Robert C. Reynolds; John A. Secrist; Melinda Sosa; E. Lucile White; Wei Zhang

There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against Mycobacterium tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.


Journal of Biomolecular Screening | 2007

A Novel Inhibitor of Mycobacterium tuberculosis Pantothenate Synthetase

E. Lucile White; Kristen Southworth; Larry J. Ross; Sara Cooley; Rachel B. Gill; Melinda Sosa; Anna Manouvakhova; Lynn Rasmussen; Celia W. Goulding; David Eisenberg; Thomas M. Fletcher

Pantothenate synthetase (PS; EC 6.3.2.1), encoded by the panC gene, catalyzes the essential adenosine triphosphate (ATP)–dependent condensation of D-pantoate and β-alanine to form pantothenate in bacteria, yeast, and plants; pantothenate is a key precursor for the biosynthesis of coenzyme A (CoA) and acyl carrier protein (ACP). Because the enzyme is absent in mammals and both CoA and ACP are essential cofactors for bacterial growth, PS is an attractive chemotherapeutic target. An automated high-throughput screen was developed to identify drugs that inhibit Mycobacterium tuberculosis PS. The activity of PS was measured spectrophotometrically through an enzymatic cascade involving myokinase, pyruvate kinase, and lactate dehydrogenase. The rate of PS ATP utilization was quantitated by the reduction of absorbance due to the oxidation of NADH to NAD+ by lactate dehydrogenase, which allowed for an internal control to detect interference from compounds that absorb at 340 nm. This coupled enzymatic reaction was used to screen 4080 compounds in a 96-well format. This discussion describes a novel inhibitor of PS that exhibits potential as an antimicrobial agent.


Journal of Biomolecular Screening | 2008

High-Throughput Screening of a 100,000-Compound Library for Inhibitors of Influenza A Virus (H3N2)

William Severson; Michael McDowell; Subramaniam Ananthan; Dong-Hoon Chung; Lynn Rasmussen; Melinda Sosa; E. Lucile White; James W. Noah; Colleen B. Jonsson

Using a highly reproducible and robust cell-based high-throughput screening (HTS) assay, the authors screened a 100,000-compound library at 14- and 114-µM compound concentration against influenza strain A/Udorn/72 (H3N2). The “hit” rates (>50% inhibition of the viral cytopathic effect) from the 14- and 114-µM screens were 0.022% and 0.38%, respectively. The hits were evaluated for their antiviral activity, cell toxicity, and selectivity in dose-response experiments. The screen at the lower concentration yielded 3 compounds, which displayed moderate activity (SI50 = 10-49). Intriguingly, the screen at the higher concentration revealed several additional hits. Two of these hits were highly active with an SI50 > 50. Time of addition experiments revealed 1 compound that inhibited early and 4 other compounds that inhibited late in the virus life cycle, suggesting they affect entry and replication, respectively. The active compounds represent several different classes of molecules such as carboxanilides, 1-benzoyl-3-arylthioureas, sulfonamides, and benzothiazinones, which have not been previously identified as having antiviral/anti-influenza activity. (Journal of Biomolecular Screening 2008:879-887)


Journal of Biomolecular Screening | 2011

Discovery of Novel Benzoquinazolinones and Thiazoloimidazoles, Inhibitors of Influenza H5N1 and H1N1 Viruses, from a Cell-Based High-Throughput Screen

Joseph A. Maddry; Xi Chen; Colleen B. Jonsson; Subramaniam Ananthan; Judith V. Hobrath; Donald F. Smee; James W. Noah; Diana L. Noah; Xiaolin Xu; Fuli Jia; Clinton Maddox; Melinda Sosa; E. Lucile White; William Severson

A highly reproducible and robust cell-based high-throughput screening (HTS) assay was adapted for screening of small molecules for antiviral activity against influenza virus strain A/Vietnam/1203/2004 (H5N1). The NIH Molecular Libraries Small Molecule Repository (MLSMR) Molecular Libraries Screening Centers Network (MLSCN) 100,000-compound library was screened at 50 µM. The “hit” rate (>25% inhibition of the viral cytopathic effect) from the single-dose screen was 0.32%. The hits were evaluated for their antiviral activity, cell toxicity, and selectivity in dose-response experiments. The screen yielded 5 active compounds (SI value >3). One compound showed an SI50 value of greater than 3, 3 compounds had SI values ranging from greater than 14 to 34, and the most active compound displayed an SI value of 94. The active compounds represent 2 different classes of molecules, benzoquinazolinones and thiazoloimidazoles, which have not been previously identified as having antiviral/anti-influenza activity. These molecules were also effective against influenza A/California/04/2009 virus (H1N1) and other H1N1 and H5N1 virus strains in vitro but not H3N2 strains. Real-time qRT-PCR results reveal that these chemotypes significantly reduced M1 RNA levels as compared to the no-drug influenza-infected Madin Darby canine kidney cells.


PLOS Pathogens | 2014

Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2.

Dong-Hoon Chung; Colleen B. Jonsson; Nichole A. Tower; Yong Kyu Chu; Ergin Sahin; Jennifer E. Golden; James W. Noah; Chad E. Schroeder; Julie Sotsky; Melinda Sosa; Daniel E. Cramer; Sara McKellip; Lynn Rasmussen; E. Lucile White; Connie S. Schmaljohn; Justin G. Julander; Jeffrey M. Smith; Claire Marie Filone; John H. Connor; Yasuteru Sakurai; Robert A. Davey

Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.


Journal of Biomolecular Screening | 2012

High-throughput screening identifies a bisphenol inhibitor of SV40 large T antigen ATPase activity.

Sandlin P. Seguin; Carrie W. Evans; Miranda Nebane-Akah; Sara McKellip; Subramaniam Ananthan; Nichole A. Tower; Melinda Sosa; Lynn Rasmussen; E. Lucile White; Brooks E. Maki; Daljit S. Matharu; Jennifer E. Golden; Jeffrey Aubé; Jeffrey L. Brodsky; James W. Noah

The authors conducted a high-throughput screening campaign for inhibitors of SV40 large T antigen ATPase activity to identify candidate antivirals that target the replication of polyomaviruses. The primary assay was adapted to 1536-well microplates and used to screen the National Institutes of Health Molecular Libraries Probe Centers Network library of 306 015 compounds. The primary screen had an Z value of ~0.68, signal/background = 3, and a high (5%) DMSO tolerance. Two counterscreens and two secondary assays were used to prioritize hits by EC50, cytotoxicity, target specificity, and off-target effects. Hits that inhibited ATPase activity by >44% in the primary screen were tested in dose–response efficacy and eukaryotic cytotoxicity assays. After evaluation of hit cytotoxicity, drug likeness, promiscuity, and target specificity, three compounds were chosen for chemical optimization. Chemical optimization identified a class of bisphenols as the most effective biochemical inhibitors. Bisphenol A inhibited SV40 large T antigen ATPase activity with an IC50 of 41 µM in the primary assay and 6.2 µM in a cytoprotection assay. This compound class is suitable as probes for biochemical investigation of large T antigen ATPase activity, but because of their cytotoxicity, further optimization is necessary for their use in studying polyomavirus replication in vivo.


Journal of Biomolecular Screening | 2012

Primary and Secondary Drug Screening Assays for Friedreich Ataxia

M. Grazia Cotticelli; Lynn Rasmussen; Nicole L. Kushner; Sara McKellip; Melinda Sosa; Anna Manouvakhova; Shuang Feng; E. Lucile White; Joseph A. Maddry; Jill Heemskerk; Robert J. Oldt; Lea F. Surrey; Rachel Ochs; Robert B. Wilson

Friedreich ataxia (FRDA) is an autosomal recessive neuro- and cardiodegenerative disorder for which there are no proven effective treatments. FRDA is caused by decreased expression and/or function of the protein frataxin. Frataxin chaperones iron in the mitochondrial matrix for the assembly of iron–sulfur clusters (ISCs), which are prosthetic groups critical for the function of the Krebs cycle and the mitochondrial electron transport chain (ETC). Decreased expression of frataxin or the yeast frataxin orthologue, Yfh1p, is associated with decreased ISC assembly, mitochondrial iron accumulation, and increased oxidative stress, all of which contribute to mitochondrial dysfunction. Using yeast depleted of Yfh1p, a high-throughput screening (HTS) assay was developed in which mitochondrial function was monitored by reduction of the tetrazolium dye WST-1 in a growth medium with a respiration-only carbon source. Of 101 200 compounds screened, 302 were identified that effectively rescue mitochondrial function. To confirm activities in mammalian cells and begin understanding mechanisms of action, secondary screening assays were developed using murine C2C12 cells and yeast mutants lacking specific complexes of the ETC, respectively. The compounds identified in this study have potential relevance for other neurodegenerative disorders associated with mitochondrial dysfunction, such as Parkinson disease.


Journal of Neuroscience Research | 2011

Identification of novel small molecule activators of nuclear factor-κb with neuroprotective action via high-throughput screening

Marina Manuvakhova; Guyla G. Johnson; Misti C. White; Subramaniam Ananthan; Melinda Sosa; Clinton Maddox; Sara McKellip; Lynn Rasmussen; Krister Wennerberg; Judith V. Hobrath; E. Lucile White; Joseph A. Maddry; Maurizio Grimaldi

Neuronal noncytokine‐dependent p50/p65 nuclear factor‐κB (the primary NF‐κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF‐κB could represent a viable neuroprotective target. We have developed a cell‐based assay able to detect NF‐κB expression enhancement, and through its use we have identified small molecules able to up‐regulate NF‐κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high‐potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow‐up. The experiments described here highlighted that seven compounds caused noncanonical long‐lasting NF‐κB activation in primary astrocytes. Molecular NF‐κB docking experiments indicate that compounds could be modulating NF‐κB‐induced NF‐κB expression via enhancement of NF‐κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF‐κB (I‐κB). One of the prototypical compounds caused a large reduction of glutamate‐induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF‐κB expression in neurons in a cytokine receptor‐independent manner, which results in both long‐lasting p65 NF‐κB translocation/activation and decreased glutamate neurotoxicity.


Journal of Medicinal Chemistry | 2014

Development of (E)-2-((1,4-dimethylpiperazin-2-ylidene)amino)-5-nitro-N-phenylbenzamide, ML336: Novel 2-amidinophenylbenzamides as potent inhibitors of venezuelan equine encephalitis virus.

Chad E. Schroeder; Tuanli Yao; Julie Sotsky; Robert A. Smith; Sudeshna Roy; Yong Kyu Chu; Haixun Guo; Nichole A. Tower; James W. Noah; Sara McKellip; Melinda Sosa; Lynn Rasmussen; Layton H. Smith; E. Lucile White; Jeffrey Aubé; Colleen B. Jonsson; Dong-Hoon Chung; Jennifer E. Golden

Venezuelan equine encephalitis virus (VEEV) is an emerging pathogenic alphavirus that can cause significant disease in humans. Given the absence of therapeutic options available and the significance of VEEV as a weaponized agent, an optimization effort was initiated around a quinazolinone screening hit 1 with promising cellular antiviral activity (EC50 = 0.8 μM), limited cytotoxic liability (CC50 > 50 μM), and modest in vitro efficacy in reducing viral progeny (63-fold at 5 μM). Scaffold optimization revealed a novel rearrangement affording amidines, specifically compound 45, which was found to potently inhibit several VEEV strains in the low nanomolar range without cytotoxicity (EC50 = 0.02–0.04 μM, CC50 > 50 μM) while limiting in vitro viral replication (EC90 = 0.17 μM). Brain exposure was observed in mice with 45. Significant protection was observed in VEEV-infected mice at 5 mg kg–1 day–1 and viral replication appeared to be inhibited through interference of viral nonstructural proteins.

Collaboration


Dive into the Melinda Sosa's collaboration.

Top Co-Authors

Avatar

E. Lucile White

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lynn Rasmussen

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nichole A. Tower

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James W. Noah

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sara McKellip

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Frank Schoenen

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Clinton Maddox

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Carrie W. Evans

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

N. Miranda Nebane

Southern Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge