Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melis Karaca is active.

Publication


Featured researches published by Melis Karaca.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Role of uncoupling protein UCP2 in cell-mediated immunity: How macrophage-mediated insulitis is accelerated in a model of autoimmune diabetes

Yalin Emre; Corinne Hurtaud; Melis Karaca; Tobias Nübel; Flora Zavala; Daniel Ricquier

Infiltration of inflammatory cells into pancreatic islets of Langerhans and selective destruction of insulin-secreting β-cells are characteristics of type 1 diabetes. Uncoupling protein 2 (UCP2) is a mitochondrial protein expressed in immune cells. UCP2 controls macrophage activation by modulating the production of mitochondrial reactive oxygen species (ROS) and MAPK signaling. We investigated the role of UCP2 on immune cell activity in type 1 diabetes in Ucp2-deficient mice. Using the model of multiple low-dose streptozotocin (STZ)-induced diabetes, we found that autoimmune diabetes was strongly accelerated in Ucp2-KO mice, compared with Ucp2-WT mice with increased intraislet lymphocytic infiltration. Macrophages from STZ-treated Ucp2-KO mice had increased IL-1β and nitric oxide (NO) production, compared with WT macrophages. Moreover, more macrophages were recruited in islets of STZ-treated Ucp2-KO mice, compared with Ucp2-WT mice. This finding also was accompanied by increased NO/ROS-induced damage. Altogether, our data show that inflammation is stronger in Ucp2-KO mice and islets, leading to the exacerbated disease in these mice. Our results highlight the mitochondrial protein UCP2 as a new player in autoimmune diabetes.


Journal of Neurochemistry | 2012

Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission

Francesca Frigerio; Melis Karaca; Mathias De Roo; Vladimir Mlynarik; Dorte M. Skytt; Stefania Carobbio; Kamilla Pajęcka; Helle S. Waagepetersen; Rolf Gruetter; Dominique Muller; Pierre Maechler

Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotransmitter pathways. Importance of brain GDH was questioned here by generation of CNS‐specific GDH‐null mice (CnsGlud1−/−); which were viable, fertile and without apparent behavioral problems. GDH immunoreactivity as well as enzymatic activity were absent in Cns‐Glud1−/− brains. Immunohistochemical analyses on brain sections revealed that the pyramidal cells of control animals were positive for GDH, whereas the labeling was absent in hippocampal sections of Cns‐Glud1−/− mice. Electrophysiological recordings showed that deletion of GDH within the CNS did not alter synaptic transmission in standard conditions. Cns‐Glud1−/− mice exhibited deficient oxidative catabolism of glutamate in astrocytes, showing that GDH is required for Krebs cycle pathway. As revealed by NMR studies, brain glutamate levels remained unchanged, whereas glutamine levels were increased. This pattern was favored by up‐regulation of astrocyte‐type glutamate and glutamine transporters and of glutamine synthetase. Present data show that the lack of GDH in the CNS modifies the metabolic handling of glutamate without altering synaptic transmission.


Cell Reports | 2015

GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution

Melis Karaca; Francesca Frigerio; Stephanie Migrenne; Juliette Martin-Levilain; Dorte M. Skytt; Kamilla Pajęcka; Rafael Martín-del-Río; Rolf Gruetter; Jorge Tamarit-Rodriguez; Helle S. Waagepetersen; Christophe Magnan; Pierre Maechler

Glucose, the main energy substrate used in the CNS, is continuously supplied by the periphery. Glutamate, the major excitatory neurotransmitter, is foreseen as a complementary energy contributor in the brain. In particular, astrocytes actively take up glutamate and may use it through oxidative glutamate dehydrogenase (GDH) activity. Here, we investigated the significance of glutamate as energy substrate for the brain. Upon glutamate exposure, astrocytes generated ATP in a GDH-dependent way. The observed lack of glutamate oxidation in brain-specific GDH null CnsGlud1(-/-) mice resulted in a central energy-deprivation state with increased ADP/ATP ratios and phospho-AMPK in the hypothalamus. This induced changes in the autonomous nervous system balance, with increased sympathetic activity promoting hepatic glucose production and mobilization of substrates reshaping peripheral energy stores. Our data reveal the importance of glutamate as necessary energy substrate for the brain and the role of central GDH in the regulation of whole-body energy homeostasis.


Neurochemistry International | 2011

From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis

Melis Karaca; Francesca Frigerio; Pierre Maechler

Glutamate dehydrogenase (GDH) is a mitochondrial enzyme linking the Krebs cycle to the multifunctional amino acid glutamate. Thereby, GDH plays a pivotal role between carbohydrate and protein metabolisms, controlling production and consumption of the messenger molecule glutamate in neuroendocrine cells. GDH activity is under the control of several regulators, conferring to this enzyme energy-sensor property. Indeed, GDH directly depends on the provision of the co-factor NADH/NAD(+), rendering the enzyme sensitive to the redox status of the cell. Moreover, GDH is allosterically regulated by GTP and ADP. GDH is also regulated by ADP-ribosylation, mediated by a member of the energy-sensor family sirtuins, namely SIRT4. In the brain, GDH ensures the cycling of the neurotransmitter glutamate between neurons and astrocytes. GDH also controls ammonia metabolism and detoxification, mainly in the liver and kidney. In pancreatic β-cells, the importance of GDH as a key enzyme in the regulation of insulin secretion is now well established. Inhibition of GDH activity decreases insulin release, while activating mutations are associated with a hyperinsulinism syndrome. Although GDH enzyme catalyzes the same reaction in every tissue, its function regarding metabolic homeostasis varies greatly according to specific organs. In this review, we will discuss specificities of GDH regulation in neuroendocrine cells, in particular pancreatic islets and central nervous system.


Neurochemical Research | 2014

Development of Mice with Brain-Specific Deletion of Floxed Glud1 (Glutamate Dehydrogenase 1) Using Cre Recombinase Driven by the Nestin Promoter

Melis Karaca; Pierre Maechler

In the brain, Glud1-encoded glutamate dehydrogenase plays a major role in the recycling of the neurotransmitter glutamate. We recently reported a new model of brain-specific Glud1 null mice (Cns-Glud1−/−) lacking glutamate dehydrogenase in the central nervous system. Cns-Glud1−/− mice exhibit reduced astrocytic glutamate breakdown and redirection of glutamate pathways without altering synaptic transmission. Cns-Glud1−/− mice were generated using LoxP and Nestin-Cre technology. Nestin-Cre mice are widely used to investigate gene deletion in the central nervous system. However, the Nes-Cre transgene itself was reported to induce a phenotype related to body weight gain. Here, we review the potential side-effects of Nes-Cre and analysed Cns-Glud1−/− body weight gain. Overall, Nestin-Cre mice may exhibit transient and moderate growth retardation during the few weeks immediately following weaning. Pending appropriate controls and homogenization of the genetic background, Nestin-Cre technology is a valuable tool enabling disruption of genes of interest in the central nervous system.


Proceedings of the National Academy of Sciences of the United States of America | 2016

CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation

Beat A. Imhof; Stephane Jemelin; Romain Roger Ballet; Christian Vesin; Marco Schapira; Melis Karaca; Yalin Emre

Significance Upon infection, circulating leukocytes leave the bloodstream and migrate into the inflammatory site. Neutrophils are the first leukocytes to be recruited within a few hours, followed by inflammatory lymphocyte antigen 6 complex (Ly6C)-positive monocytes. This study refines the model of the leukocyte recruitment cascade. We demonstrate that upon Toll-like receptor 7/8-mediated vascular inflammation, platelet activation drives the rapid mobilization of Ly6Clow monocytes to the luminal side of the endothelium. Accumulated Ly6Clow monocytes do not extravasate into the tissue. Instead, they meticulously patrol the endothelium and control the subsequent recruitment of neutrophils. Moreover, we show that endothelium-bound cyteine-rich protein 61 (CYR61)/CYR61 connective tissue growth factor nephroblastoma overexpressed 1 (CCN1) protein provides a molecular support for adequate patrolling of Ly6Clow monocytes in the steady state and under inflammatory conditions. Inflammation is characterized by the recruitment of leukocytes from the bloodstream. The rapid arrival of neutrophils is followed by a wave of inflammatory lymphocyte antigen 6 complex (Ly6C)-positive monocytes. In contrast Ly6Clow monocytes survey the endothelium in the steady state, but their role in inflammation is still unclear. Here, using confocal intravital microscopy, we show that upon Toll-like receptor 7/8 (TLR7/8)-mediated inflammation of mesenteric veins, platelet activation drives the rapid mobilization of Ly6Clow monocytes to the luminal side of the endothelium. After repeatedly interacting with platelets, Ly6Clow monocytes commit to a meticulous patrolling of the endothelial wall and orchestrate the subsequent arrival and extravasation of neutrophils through the production of proinflammatory cytokines and chemokines. At a molecular level, we show that cysteine-rich protein 61 (CYR61)/CYR61 connective tissue growth factor nephroblastoma overexpressed 1 (CCN1) protein is released by activated platelets and enables the recruitment of Ly6Clow monocytes upon vascular inflammation. In addition endothelium-bound CCN1 sustains the adequate patrolling of Ly6Clow monocytes both in the steady state and under inflammatory conditions. Blocking CCN1 or platelets with specific antibodies impaired the early arrival of Ly6Clow monocytes and abolished the recruitment of neutrophils. These results refine the leukocyte recruitment cascade model by introducing endothelium-bound CCN1 as an inflammation mediator and by demonstrating a role for platelets and patrolling Ly6Clow monocytes in acute vascular inflammation.


Biochimica et Biophysica Acta | 2015

Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells.

F. Aragón; Melis Karaca; A. Novials; R. Maldonado; Pierre Maechler; Blanca Rubí

BACKGROUND Plasma levels of pancreatic polypeptide (PP) rise upon food intake. Although other pancreatic islet hormones, such as insulin and glucagon, have been extensively investigated, PP secretion and actions are still poorly understood. METHODS The release of PP upon glucose stimulation and the effects of PP on glucagon and insulin secretion were analyzed in isolated pancreatic islets. Expression of PP receptor (PPYR1) was investigated by immunoblotting, quantitative RT-PCR on sorted pancreatic islet cells, and immunohistochemistry. RESULTS In isolated mouse pancreatic islets, glucose stimulation increased PP release, while insulin secretion was up and glucagon release was down. Direct exposure of islets to PP inhibited glucagon release. In mouse islets, PPYR1 protein was observed by immunoblotting and quantitative RT-PCR revealed PPYR1 expression in the FACS-enriched glucagon alpha-cell fraction. Immunohistochemistry on pancreatic sections showed the presence of PPYR1 in alpha-cells of both mouse and human islets, while the receptor was absent in other islet cell types and exocrine pancreas. CONCLUSIONS Glucose stimulates PP secretion and PP inhibits glucagon release in mouse pancreatic islets. PP receptors are present in alpha-cells of mouse and human pancreatic islets. GENERAL SIGNIFICANCE These data demonstrate glucose-regulated secretion of PP and its effects on glucagon release through PPYR1 receptors expressed by alpha-cells.


Journal of Biological Chemistry | 2016

The Amplifying Pathway of the β-Cell Contributes to Diet-induced Obesity

Laurene Marine Vetterli; Stefania Carobbio; Francesca Frigerio; Melis Karaca; Pierre Maechler

Efficient energy storage in adipose tissues requires optimal function of the insulin-producing β-cell, whereas its dysfunction promotes diabetes. The associated paradox related to β-cell efficiency is that excessive accumulation of fat in adipose tissue predisposes for type 2 diabetes. Insulin exocytosis is regulated by intracellular metabolic signal transduction, with glutamate dehydrogenase playing a key role in the amplification of the secretory response. Here, we used mice with β-cell-selective glutamate dehydrogenase deletion (βGlud1−/−), lacking an amplifying pathway of insulin secretion. As opposed to control mice, βGlud1−/− animals fed a high calorie diet maintained glucose tolerance and did not develop diet-induced obesity. Islets of βGlud1−/− mice did not increase their secretory response upon high calorie feeding, as did islets of control mice. Inhibited adipose tissue expansion observed in knock-out mice correlated with lower expression of genes responsible for adipogenesis. Rather than being efficiently stored, lipids were consumed at a higher rate in βGlud1−/− mice compared with controls, in particular during food intake periods. These results show that reduced β-cell function prior to high calorie feeding prevented diet-induced obesity.


Journal of Cerebral Blood Flow and Metabolism | 2017

Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation

Michaela C. Hohnholt; Vibe H. Andersen; Jens V. Andersen; Sofie K. Christensen; Melis Karaca; Pierre Maechler; Helle S. Waagepetersen

The enzyme glutamate dehydrogenase (GDH; Glud1) catalyzes the (reversible) oxidative deamination of glutamate to α-ketoglutarate accompanied by a reduction of NAD+ to NADH. GDH connects amino acid, carbohydrate, neurotransmitter and oxidative energy metabolism. Glutamine is a neurotransmitter precursor used by neurons to sustain the pool of glutamate, but glutamine is also vividly oxidized for support of energy metabolism. This study investigates the role of GDH in neuronal metabolism by employing the Cns-Glud1−/− mouse, lacking GDH in the brain (GDH KO) and metabolic mapping using 13C-labelled glutamine and glucose. We observed a severely reduced oxidative glutamine metabolism during glucose deprivation in synaptosomes and cultured neurons not expressing GDH. In contrast, in the presence of glucose, glutamine metabolism was not affected by the lack of GDH expression. Respiration fuelled by glutamate was significantly lower in brain mitochondria from GDH KO mice and synaptosomes were not able to increase their respiration upon an elevated energy demand. The role of GDH for metabolism of glutamine and the respiratory capacity underscore the importance of GDH for neurons particularly during an elevated energy demand, and it may reflect the large allosteric activation of GDH by ADP.


Redox biology | 2017

Upregulation of UCP2 in beta-cells confers partial protection against both oxidative stress and glucotoxicity

Ning Li; Melis Karaca; Pierre Maechler

Deterioration of pancreatic beta-cells plays a critical role in the development of type 2 diabetes. Among the various stressors contributing to these deleterious effects, glucotoxicity and superoxides have been proposed as major players. In this context, the mitochondrial uncoupling protein UCP2 is regularly associated with the stress response. In the present study, we tested the effects of UCP2 upregulation in mouse islets with beta-cell specific overexpression of UCP2 (RIP-UCP2). Islets were subjected to both chronic glucotoxicity (7 days at 30 mM glucose) and acute oxidative stress (200 µM H2O2 for 10 min). Increased UCP2 expression did not alter mitochondrial potential and ATP generation but protected against glucotoxic effects. Glucose-stimulated insulin secretion was altered by both glucotoxicity and oxidative stress, in particular through higher basal insulin release at non-stimulatory glucose concentrations. The secretory response to glucose stimulation was partially preserved in beta-cells overexpressing UCP2. The higher rate of cell death induced by chronic high glucose exposure was lower in RIP-UCP2 islets. Finally, superoxide production was reduced by high glucose, both under acute and chronic conditions, and not modified by UCP2 overexpression. In conclusion, upregulation of UCP2 conferred protective effects to the stressed beta-cell through mechanisms not directly associated with superoxide production.

Collaboration


Dive into the Melis Karaca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolf Gruetter

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Dorte M. Skytt

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge