Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mélissa Bol is active.

Publication


Featured researches published by Mélissa Bol.


Basic Research in Cardiology | 2013

Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury

Nan Wang; Elke De Vuyst; Raf Ponsaerts; Kerstin Boengler; Nicolás Palacios-Prado; Joris Wauman; Charles P. Lai; Marijke De Bock; Elke Decrock; Mélissa Bol; Mathieu Vinken; Vera Rogiers; Jan Tavernier; W. Howard Evans; Christian C. Naus; Feliksas F. Bukauskas; Karin R. Sipido; Gerd Heusch; Rainer Schulz; Geert Bultynck; Luc Leybaert

Connexin-43 (Cx43), a predominant cardiac connexin, forms gap junctions (GJs) that facilitate electrical cell–cell coupling and unapposed/nonjunctional hemichannels that provide a pathway for the exchange of ions and metabolites between cytoplasm and extracellular milieu. Uncontrolled opening of hemichannels in the plasma membrane may be deleterious for the myocardium and blocking hemichannels may confer cardioprotection by preventing ionic imbalance, cell swelling and loss of critical metabolites. Currently, all known hemichannel inhibitors also block GJ channels, thereby disturbing electrical cell–cell communication. Here we aimed to characterize a nonapeptide, called Gap19, derived from the cytoplasmic loop (CL) of Cx43 as a hemichannel blocker and examined its effect on hemichannel currents in cardiomyocytes and its influence in cardiac outcome after ischemia/reperfusion. We report that Gap 19 inhibits Cx43 hemichannels without blocking GJ channels or Cx40/pannexin-1 hemichannels. Hemichannel inhibition is due to the binding of Gap19 to the C-terminus (CT) thereby preventing intramolecular CT–CL interactions. The peptide inhibited Cx43 hemichannel unitary currents in both HeLa cells exogenously expressing Cx43 and acutely isolated pig ventricular cardiomyocytes. Treatment with Gap19 prevented metabolic inhibition-enhanced hemichannel openings, protected cardiomyocytes against volume overload and cell death following ischemia/reperfusion in vitro and modestly decreased the infarct size after myocardial ischemia/reperfusion in mice in vivo. We conclude that preventing Cx43 hemichannel opening with Gap19 confers limited protective effects against myocardial ischemia/reperfusion injury.


Biochimica et Biophysica Acta | 2013

Paracrine signaling through plasma membrane hemichannels

Nan Wang; Marijke De Bock; Elke Decrock; Mélissa Bol; Ashish K. Gadicherla; Mathieu Vinken; Vera Rogiers; Feliksas F. Bukauskas; Geert Bultynck; Luc Leybaert

Plasma membrane hemichannels composed of connexin (Cx) proteins are essential components of gap junction channels but accumulating evidence suggests functions of hemichannels beyond the communication provided by junctional channels. Hemichannels not incorporated into gap junctions, called unapposed hemichannels, can open in response to a variety of signals, electrical and chemical, thereby forming a conduit between the cells interior and the extracellular milieu. Open hemichannels allow the bidirectional passage of ions and small metabolic or signaling molecules of below 1-2kDa molecular weight. In addition to connexins, hemichannels can also be formed by pannexin (Panx) proteins and current evidence suggests that Cx26, Cx32, Cx36, Cx43 and Panx1, form hemichannels that allow the diffusive release of paracrine messengers. In particular, the case is strong for ATP but substantial evidence is also available for other messengers like glutamate and prostaglandins or metabolic substances like NAD(+) or glutathione. While this field is clearly in expansion, evidence is still lacking at essential points of the paracrine signaling cascade that includes not only messenger release, but also downstream receptor signaling and consequent functional effects. The data available at this moment largely derives from in vitro experiments and still suffers from the difficulty of separating the functions of connexin-based hemichannels from gap junctions and from pannexin hemichannels. However, messengers like ATP or glutamate have universal roles in the body and further defining the contribution of hemichannels as a possible release pathway is expected to open novel avenues for better understanding their contribution to a variety of physiological and pathological processes. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.


Journal of Cerebral Blood Flow and Metabolism | 2011

Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability.

Marijke De Bock; Maxime Culot; Nan Wang; Mélissa Bol; Elke Decrock; Elke De Vuyst; Anaelle da Costa; Ine Dauwe; Mathieu Vinken; Alexander M. Simon; Vera Rogiers; Gaspard De Ley; William Howard Evans; Geert Bultynck; Geneviève Dupont; Roméo Cecchelli; Luc Leybaert

The cytoplasmic Ca2+ concentration ([Ca2+]i) is an important factor determining the functional state of blood-brain barrier (BBB) endothelial cells but little is known on the effect of dynamic [Ca2+]i changes on BBB function. We applied different agonists that trigger [Ca2+]i oscillations and determined the involvement of connexin channels and subsequent effects on endothelial permeability in immortalized and primary brain endothelial cells. The inflammatory peptide bradykinin (BK) triggered [Ca2+]i oscillations and increased endothelial permeability. The latter was prevented by buffering [Ca2+]i with BAPTA, indicating that [Ca2+]i oscillations are crucial in the permeability changes. Bradykinin-triggered [Ca2+]i oscillations were inhibited by interfering with connexin channels, making use of carbenoxolone, Gap27, a peptide blocker of connexin channels, and Cx37/43 knockdown. Gap27 inhibition of the oscillations was rapid (within minutes) and work with connexin hemichannel-permeable dyes indicated hemichannel opening and purinergic signaling in response to stimulation with BK. Moreover, Gap27 inhibited the BK-triggered endothelial permeability increase in in vitro and in vivo experiments. By contrast, [Ca2+]i oscillations provoked by exposure to adenosine 5’ triphosphate (ATP) were not affected by carbenoxolone or Gap27 and ATP did not disturb endothelial permeability. We conclude that interfering with endothelial connexin hemichannels is a novel approach to limiting BBB-permeability alterations.


Progress in Neurobiology | 2013

Endothelial calcium dynamics, connexin channels and blood-brain barrier function

Marijke De Bock; Nan Wang; Elke Decrock; Mélissa Bol; Ashish K. Gadicherla; Maxime Culot; R. Cecchelli; Geert Bultynck; Luc Leybaert

Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.


Journal of Biological Chemistry | 2012

Connexin 43 Hemichannels Contribute to Cytoplasmic Ca2+ Oscillations by Providing a Bimodal Ca2+-dependent Ca2+ Entry Pathway

Marijke De Bock; Nan Wang; Mélissa Bol; Elke Decrock; Raf Ponsaerts; Geert Bultynck; Geneviève Dupont; Luc Leybaert

Background: Connexin hemichannels are Ca2+-permeable plasma membrane channels that are controlled by [Ca2+]i; therefore, they may contribute to Ca2+ oscillations. Results: Ca2+ oscillations triggered by bradykinin in connexin-expressing cells were inhibited by blocking hemichannel opening or by preventing their closure at high [Ca2+]i; ATP-triggered oscillations were unaffected. Conclusion: Hemichannels contribute to oscillations by controlling Ca2+ entry. Significance: Hemichannels together with InsP3 receptors help shape agonist-induced Ca2+ oscillations. Many cellular functions are driven by changes in the intracellular Ca2+ concentration ([Ca2+]i) that are highly organized in time and space. Ca2+ oscillations are particularly important in this respect and are based on positive and negative [Ca2+]i feedback on inositol 1,4,5-trisphosphate receptors (InsP3Rs). Connexin hemichannels are Ca2+-permeable plasma membrane channels that are also controlled by [Ca2+]i. We aimed to investigate how hemichannels may contribute to Ca2+ oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca2+ oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides 32Gap27/43Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca2+. Alleviating the negative feedback of [Ca2+]i on InsP3Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca2+]i but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca2+]i inhibition. Unlike interfering with the bell-shaped dependence of InsP3Rs to [Ca2+]i, CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca2+ entry during the rising phase of the Ca2+ spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.


Cell Death & Differentiation | 2012

Transfer of IP 3 through gap junctions is critical, but not sufficient, for the spread of apoptosis

Elke Decrock; Dmitri V. Krysko; Mathieu Vinken; A Kaczmarek; G Crispino; Mélissa Bol; Nan Wang; M. De Bock; E De Vuyst; Christian C. Naus; Vera Rogiers; Peter Vandenabeele; C Erneux; F Mammano; Geert Bultynck; Luc Leybaert

Decades of research have indicated that gap junction channels contribute to the propagation of apoptosis between neighboring cells. Inositol 1,4,5-trisphosphate (IP3) has been proposed as the responsible molecule conveying the apoptotic message, although conclusive results are still missing. We investigated the role of IP3 in a model of gap junction-mediated spreading of cytochrome C-induced apoptosis. We used targeted loading of high-molecular-weight agents interfering with the IP3 signaling cascade in the apoptosis trigger zone and cell death communication zone of C6-glioma cells heterologously expressing connexin (Cx)43 or Cx26. Blocking IP3 receptors or stimulating IP3 degradation both diminished the propagation of apoptosis. Apoptosis spread was also reduced in cells expressing mutant Cx26, which forms gap junctions with an impaired IP3 permeability. However, IP3 by itself was not able to induce cell death, but only potentiated cell death propagation when the apoptosis trigger was applied. We conclude that IP3 is a key necessary messenger for communicating apoptotic cell death via gap junctions, but needs to team up with other factors to become a fully pro-apoptotic messenger.


Brain Research | 2012

Low extracellular Ca2+ conditions induce an increase in brain endothelial permeability that involves intercellular Ca2+ waves.

Marijke De Bock; Maxime Culot; Nan Wang; Anaelle da Costa; Elke Decrock; Mélissa Bol; Geert Bultynck; Roméo Cecchelli; Luc Leybaert

The intracellular calcium concentration ([Ca(2+)](i)) is an important factor determining the permeability of endothelial barriers including the blood-brain barrier (BBB). However, nothing is known concerning the effect of spatially propagated intercellular Ca(2+) waves (ICWs). The propagation of ICWs relies in large part on channels formed by connexins that are present in endothelia. We hypothesized that ICWs may result in a strong disturbance of endothelial function, because the [Ca(2+)](i) changes are coordinated and involve multiple cells. Thus, we aimed to investigate the effect of ICWs on endothelial permeability. ICW activity was triggered in immortalized and primary brain endothelial cells by lowering the extracellular Ca(2+) concentration. Low extracellular Ca(2+) increased the endothelial permeability and this was significantly suppressed by buffering [Ca(2+)](i) with BAPTA-AM, indicating a central role of [Ca(2+)](i) changes. The endothelial permeability increase was furthermore inhibited by the connexin channel blocking peptide Gap27, which also blocked the ICWs, and by inhibiting protein kinase C (PKC), Ca(2+)/calmodulin-dependent kinase II (CaMKII) and actomyosin contraction. We compared these observations with the [Ca(2+)](i) changes and permeability alterations provoked by the inflammatory agent bradykinin (BK), which triggers oscillatory [Ca(2+)](i) changes without wave activity. BK-associated [Ca(2+)](i) changes and the endothelial permeability increase were significantly smaller than those associated with ICWs, and the permeability increase was not influenced by inhibition of PKC, CaMKII or actomyosin contraction. We conclude that ICWs significantly increase endothelial permeability and therefore, the connexins that underlie wave propagation form an interesting target to limit BBB alterations. This article is part of a Special Issue entitled Electrical Synapses.


Biochimica et Biophysica Acta | 2013

IP3, a small molecule with a powerful message.

Elke Decrock; Marijke De Bock; Nan Wang; Ashish K. Gadicherla; Mélissa Bol; Tinneke Delvaeye; Peter Vandenabeele; Mathieu Vinken; Geert Bultynck; Dmitri V. Krysko; Luc Leybaert

Research conducted over the past two decades has provided convincing evidence that cell death, and more specifically apoptosis, can exceed single cell boundaries and can be strongly influenced by intercellular communication networks. We recently reported that gap junctions (i.e. channels directly connecting the cytoplasm of neighboring cells) composed of connexin43 or connexin26 provide a direct pathway to promote and expand cell death, and that inositol 1,4,5-trisphosphate (IP3) diffusion via these channels is crucial to provoke apoptosis in adjacent healthy cells. However, IP3 itself is not sufficient to induce cell death and additional factors appear to be necessary to create conditions in which IP3 will exert proapoptotic effects. Although IP3-evoked Ca(2+) signaling is known to be required for normal cell survival, it is also actively involved in apoptosis induction and progression. As such, it is evident that an accurate fine-tuning of this signaling mechanism is crucial for normal cell physiology, while a malfunction can lead to cell death. Here, we review the role of IP3 as an intracellular and intercellular cell death messenger, focusing on the endoplasmic reticulum-mitochondrial synapse, followed by a discussion of plausible elements that can convert IP3 from a physiological molecule to a killer substance. Finally, we highlight several pathological conditions in which anomalous intercellular IP3/Ca(2+) signaling might play a role. This article is part of a Special Issue entitled:12th European Symposium on Calcium.


Cardiovascular Research | 2017

At the cross-point of connexins, calcium and ATP: blocking hemichannels inhibits vasoconstriction of rat small mesenteric arteries

Mélissa Bol; Nan Wang; Marijke De Bock; Benjamin Wacquier; Elke Decrock; Ashish A. Gadicherla; Kelly Decaluwé; Bert Vanheel; Harold V.M. van Rijen; Dmitri V. Krysko; Geert Bultynck; Geneviève Dupont; Johan Van de Voorde; Luc Leybaert

Aims Connexins form gap-junctions (GJs) that directly connect cells, thereby coordinating vascular cell function and controlling vessel diameter and blood flow. GJs are composed of two hemichannels contributed by each of the connecting cells. Hemichannels also exist as non-junctional channels that, when open, lead to the entry/loss of ions and the escape of ATP. Here we investigated cross-talk between hemichannels and Ca2+/purinergic signalling in controlling blood vessel contraction. We hypothesized that hemichannel Ca2+ entry and ATP release contributes to smooth muscle cell (SMC) Ca2+ dynamics, thereby influencing vessel contractility. We applied several peptide modulators of hemichannel function and inhibitors of Ca2+ and ATP signalling to investigate their influence on SMC Ca2+ dynamics and vessel contractility. Methods and results Confocal Ca2+ imaging studies on small mesenteric arteries (SMAs) from rat demonstrated that norepinephrine-induced SMC Ca2+  oscillations were inhibited by blocking IP3 receptors with xestospongin-C and by interfering with hemichannel function, most notably by the specific Cx43 hemichannel blocking peptide TAT-L2 and by TAT-CT9 that promotes Cx43 hemichannel opening. Evidence for hemichannel involvement in SMC function was supported by the fact that TAT-CT9 significantly increased SMC resting cytoplasmic Ca2+ concentration, indicating it facilitated Ca2+ entry, and by the observation that norepinephrine-triggered vessel ATP release was blocked by TAT-L2. Myograph tension measurements on isolated SMAs showed significant inhibition of norepinephrine-triggered contractility by the ATP receptor antagonist suramin, but the strongest effect was observed with TAT-L2 that gave ∼80% inhibition at 37 °C. TAT-L2 inhibition of vessel contraction was significantly reduced in conditional Cx43 knockout animals, indicating the effect was Cx43 hemichannel-dependent. Computational modelling suggested these results could be explained by the opening of a single hemichannel per SMC. Conclusions These results indicate that Cx43 hemichannels contribute to SMC Ca2+ dynamics and contractility, by facilitating Ca2+ entry, ATP release, and purinergic signalling.


European Journal of Vascular and Endovascular Surgery | 2013

Inhibiting connexin channels protects against cryopreservation-induced cell death in human blood vessels

Mélissa Bol; C. Van Geyt; S. Baert; Elke Decrock; Nan Wang; M. De Bock; Ashish K. Gadicherla; Caren Randon; William Howard Evans; Hilde Beele; R. Cornelissen; Luc Leybaert

OBJECTIVES Cryopreserved blood vessels are being increasingly employed in vascular reconstruction procedures but freezing/thawing is associated with significant cell death that may lead to graft failure. Vascular cells express connexin proteins that form gap junction channels and hemichannels. Gap junction channels directly connect the cytoplasm of adjacent cells and may facilitate the passage of cell death messengers leading to bystander cell death. Two hemichannels form a gap junction channel but these channels are also present as free non-connected hemichannels. Hemichannels are normally closed but may open under stressful conditions and thereby promote cell death. We here investigated whether blocking gap junctions and hemichannels could prevent cell death after cryopreservation. MATERIALS AND METHODS Inclusion of Gap27, a connexin channel inhibitory peptide, during cryopreservation and thawing of human saphenous veins and femoral arteries was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays and histological examination. RESULTS We report that Gap27 significantly reduces cell death in human femoral arteries and saphenous veins when present during cryopreservation/thawing. In particular, smooth muscle cell death was reduced by 73% in arteries and 71% in veins, while endothelial cell death was reduced by 32% in arteries and 51% in veins. CONCLUSIONS We conclude that inhibiting connexin channels during cryopreservation strongly promotes vascular cell viability.

Collaboration


Dive into the Mélissa Bol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geert Bultynck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu Vinken

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vera Rogiers

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge