Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa Churchill is active.

Publication


Featured researches published by Melissa Churchill.


Nature Reviews Immunology | 2012

Towards an HIV cure: a global scientific strategy

Steven G. Deeks; Brigitte Autran; Ben Berkhout; Monsef Benkirane; Scott Cairns; Nicolas Chomont; Tae Wook Chun; Melissa Churchill; Michele Di Mascio; Christine Katlama; Alain Lafeuillade; Alan Landay; Michael M. Lederman; Sharon R. Lewin; Frank Maldarelli; David J. Margolis; Martin Markowitz; Javier Martinez-Picado; James I. Mullins; John W. Mellors; Santiago Moreno; Una O'Doherty; Sarah Palmer; Marie Capucine Penicaud; Matija Peterlin; Guido Poli; Jean-Pierre Routy; Christine Rouzioux; Guido Silvestri; Mario Stevenson

Given the limitations of antiretroviral therapy and recent advances in our understanding of HIV persistence during effective treatment, there is a growing recognition that a cure for HIV infection is both needed and feasible. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. Several priorities for basic, translational and clinical research were identified. This Opinion article summarizes the groups recommended key goals for the international community.


Annals of Neurology | 2009

Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia.

Melissa Churchill; Steven L. Wesselingh; Daniel Cowley; Carlos A. Pardo; Justin C. McArthur; Bruce J. Brew; Paul R. Gorry

Astrocyte infection with human immunodeficiency virus (HIV) is considered rare, so astrocytes are thought to play a secondary role in HIV neuropathogenesis. By combining double immunohistochemistry, laser capture microdissection, and highly sensitive multiplexed polymerase chain reaction to detect HIV DNA in single astrocytes in vivo, we showed that astrocyte infection is extensive in subjects with HIV‐associated dementia, occurring in up to 19% of GFAP+ cells. In addition, astrocyte infection frequency correlated with the severity of neuropathological changes and proximity to perivascular macrophages. Our data indicate that astrocytes can be extensively infected with HIV, and suggest an important role for HIV‐infected astrocytes in HIV neuropathogenesis. Ann Neurol 2009;66:253–258


Immunology and Cell Biology | 2012

HDAC inhibitors in HIV

Fiona Wightman; Paula Ellenberg; Melissa Churchill; Sharon R. Lewin

Combination antiretroviral therapy (cART) has led to a very substantial reduction in morbidity and mortality in HIV‐infected patients; however, cART alone is unable to cure HIV and therapy is lifelong. Therefore, a new strategy to cure HIV is urgently needed. There is now a concerted effort from scientists, clinicians and funding agencies to identify ways to achieve either a functional cure (long‐term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV‐infected cells). Multiple strategies aiming at achieving a cure for HIV are currently being investigated, including both pharmacotherapy and gene therapy. In this review, we will review the rationale as well as in vitro and clinical trial data that support the role of histone deacetylase inhibitors as one approach to cure HIV.


Journal of NeuroVirology | 2006

Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues

Melissa Churchill; Paul R. Gorry; Daniel Cowley; Luxshimi Lal; Secondo Sonza; Damian F. J. Purcell; Katherine A. Thompson; Dana Gabuzda; Justin C. McArthur; Carlos A. Pardo; Steven L. Wesselingh

The importance of astrocytes as a reservoir of human immunodeficiency virus type 1 (HIV-1) in the brain remains elusive. By combining immunohistochemistry, laser capture microdissection, and triple-nested Alu-PCR, we demonstrate integrated HIV-1 in astrocytes and macrophages isolated directly from autopsy brain tissues of HIV-1-infected subjects. The ability of HIV-1 to integrate in terminally differentiated astrocytes suggests a permanent reservoir of provirus in brain that will impact the development and likely success of strategies aimed at eradicating HIV-1.


Current HIV Research | 2005

Pathogenesis of macrophage tropic HIV-1.

Paul R. Gorry; Melissa Churchill; Suzanne M. Crowe; Anthony L. Cunningham; Dana Gabuzda

Despite numerous studies on the impact of viral diversity, human immunodeficiency virus type 1 (HIV-1)-specific immune responses and host factors on disease progression, we still do not have a firm understanding of the pathogenesis of HIV-1 infection. Rapid depletion of CD4+ T-lymphocytes has been associated with a switch in viral coreceptor usage from CCR5 to CXCR4 in approximately 40 to 50% of infected individuals. However, the majority of infected individuals who progress to AIDS harbor only CCR5-dependent (R5) viral strains. HIV-1 disease progression is associated with an enhanced tropism of R5 viral strains for cells of the monocyte/macrophage lineage (enhanced M-tropism). However, the underlying molecular mechanisms contributing to enhanced M-tropism by R5 HIV-1 strains, and how HIV-1 variants with enhanced M-tropism cause CD4+ T-cell depletion in vivo are unknown. This review examines the relationship between viral coreceptor usage, M-tropism, and pathogenicity of HIV-1. We highlight evidence supporting the hypothesis that enhanced M-tropism of R5 HIV-1 results from adaptive viral evolution, resulting in HIV-1 variants that have increased ability to utilize relatively low levels of CD4 and CCR5 expressed on macrophages. The evidence also suggests that these late-emerging, R5 viral strains have reduced sensitivity to entry inhibitors, and increased ability to cause CD4+ T-lymphocyte loss. These variants are likely to impact HIV-1 disease progression, particularly in patients who persistently harbor only R5 viral strains.


Current Opinion in Hiv and Aids | 2013

Where does HIV hide? A focus on the central nervous system

Melissa Churchill; Avindra Nath

Purpose of reviewTo review the literature on infection and evolution of HIV within the brain in the context for understanding the nature of the brain reservoir and its consequences. Recent findingsHIV-1 in the brain can evolve in separate compartments within macrophage/microglia and astrocytes. The virus adapts to the brain environment to infect these cells and brain-specific mutations can be found in nearly all genes of the virus. The virus evolves to become more neurovirulent. SummaryThe brain is an ideal reservoir for the HIV. The brain is a relatively immune privileged site and the blood–brain barrier prevents easy access to antiretroviral drugs. Further, the virus infects resident macrophages and astrocytes which are long-lived cells and causes minimal cytopathology in these cells. Hence as we move towards developing strategies for eradication of the virus from the peripheral reservoirs, it is critical that we pay close attention to the virus in the brain and develop strategies for maintaining it in a latent state failure of which could result in dire consequences.


Blood | 2011

HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production.

Andrew N. Harman; Joey Lai; Stuart Turville; Shamith Samarajiwa; Lachlan Robert Gray; Valerie Marsden; Sarah K. Mercier; Kate L. Jones; Najla Nasr; Arjun Rustagi; Helen Cumming; Heather Donaghy; Johnson Mak; Michael Gale; Melissa Churchill; Paul J. Hertzog; Anthony L. Cunningham

Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs.


Nature Reviews Microbiology | 2016

HIV reservoirs: What, where and how to target them

Melissa Churchill; Steven G. Deeks; David M. Margolis; Robert F. Siliciano; Ronald Swanstrom

One of the main challenges in the fight against HIV infection is to develop strategies that are able to eliminate the persistent viral reservoir that harbours integrated, replication-competent provirus within host cellular DNA. This reservoir is resistant to antiretroviral therapy (ART) and to clearance by the immune system of the host; viruses originating from this reservoir lead to rebound viraemia once treatment is stopped, giving rise to new rounds of infection. Several studies have focused on elucidating the cells and tissues that harbour persistent virus, the true size of the reservoir and how best to target it, but these topics are the subject of ongoing debate. In this Viewpoint article, several experts in the field discuss the constitution of the viral reservoir, how best to measure it and the best ways to target this source of persistent infection.


Retrovirology | 2007

Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

Jasminka Sterjovski; Melissa Churchill; Anne Ellett; Lachlan Robert Gray; Michael Roche; Rebecca L. Dunfee; Damian F. J. Purcell; Nitin K. Saksena; Bin Wang; Secondo Sonza; Steven L. Wesselingh; Ingrid Karlsson; Eva Maria Fenyö; Dana Gabuzda; Anthony L. Cunningham; Paul R. Gorry

BackgroundCCR5-restricted (R5) human immunodeficiency virus type 1 (HIV-1) variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env) determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA) and AIDS (A) R5 Envs, respectively.ResultsCompared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362), a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs) residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure.ConclusionEnhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.


Annals of Neurology | 2004

Astrocyte specific viral strains in HIV dementia.

Katherine A. Thompson; Melissa Churchill; Paul R. Gorry; Jasminka Sterjovski; Robert B. Oelrichs; Steven L. Wesselingh; Catriona McLean

We molecularly characterized human immunodeficiency virus type 1 (HIV‐1) present in pure populations of astrocytes, macrophages, and multinucleated giant cells isolated using laser capture microdissection from brain tissue of two patients who died with HIV‐associated dementia. The V3 region of the HIV‐1 envelope (env) gene was amplified from the pure‐cell populations, and multiple clones were sequenced. In both patients, the V3 env sequences were distinct in astrocytes compared with neighboring macrophages or multinucleated giant cells and were characteristic of CCR5‐using (R5) HIV‐1. These results demonstrate cell‐specific compartmentalization of distinct R5‐like viral strains in the central nervous system microenvironment. Ann Neurol 2004

Collaboration


Dive into the Melissa Churchill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge