Melissa Crawford
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melissa Crawford.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Muller Fabbri; Alessio Paone; Federica Calore; Roberta Galli; Eugenio Gaudio; Ramasamy Santhanam; Francesca Lovat; Paolo Fadda; Charlene Mao; Gerard J. Nuovo; Nicola Zanesi; Melissa Crawford; Gulcin Ozer; Dorothee Wernicke; Hansjuerg Alder; Michael A. Caligiuri; Patrick Nana-Sinkam; Danilo Perrotti; Carlo M. Croce
MicroRNAs (miRNAs) are small noncoding RNAs, 19–24 nucleotides in length, that regulate gene expression and are expressed aberrantly in most types of cancer. MiRNAs also have been detected in the blood of cancer patients and can serve as circulating biomarkers. It has been shown that secreted miRNAs within exosomes can be transferred from cell to cell and can regulate gene expression in the receiving cells by canonical binding to their target messenger RNAs. Here we show that tumor-secreted miR-21 and miR-29a also can function by another mechanism, by binding as ligands to receptors of the Toll-like receptor (TLR) family, murine TLR7 and human TLR8, in immune cells, triggering a TLR-mediated prometastatic inflammatory response that ultimately may lead to tumor growth and metastasis. Thus, by acting as paracrine agonists of TLRs, secreted miRNAs are key regulators of the tumor microenvironment. This mechanism of action of miRNAs is implicated in tumor–immune system communication and is important in tumor growth and spread, thus representing a possible target for cancer treatment.
Biochemical and Biophysical Research Communications | 2008
Melissa Crawford; E. Brawner; Kara Batte; Lianbo Yu; Melissa G. Hunter; Gregory A. Otterson; Gerard J. Nuovo; Clay B. Marsh; Serge P. Nana-Sinkam
Crk is a member of a family of adaptor proteins that are involved in intracellular signal pathways altering cell adhesion, proliferation, and migration. Increased expression of Crk has been described in lung cancer and associated with increased tumor invasiveness. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21-25 nt long) that are capable of targeting genes for either degradation of mRNA or inhibition of translation. Crk is a predicted putative target gene for miR-126. Over-expression of miR126 in a lung cancer cell line resulted in a decrease in Crk protein without any alteration in the associated mRNA. These lung cancer cells exhibit a decrease in adhesion, migration, and invasion. Decreased cancer cell invasion was also evident following targeted knockdown of Crk. MiR-126 alters lung cancer cell phenotype by inhibiting adhesion, migration, and invasion and the effects on invasion may be partially mediated through Crk regulation.
Molecular Pharmaceutics | 2011
Yun Wu; Melissa Crawford; Bo Yu; Yicheng Mao; Serge P. Nana-Sinkam; L. James Lee
Lung cancer is the leading cause of cancer deaths in western countries and carries a poor overall five year survival rate. Several studies demonstrate that microRNAs (miRNAs or miRs) are actively involved in tumor development by serving as tumor suppressors, oncogenes or both. In lung cancer, miRNAs may serve as both diagnostic and prognostic biomarkers as well as regulate in vitro and in vivo tumor progression. However, miRNA-based therapy is faced with several challenges including lack of tissue specificity, lack of optimal delivery systems, poor cellular uptake and risk of systemic toxicity. Here, we report a cationic lipid based miRNA delivery system to address some of these challenges. Among many lung cancer related miRNAs, miR-133b, a tumor suppressor, was selected as a therapeutic target because it directly targets the prosurvival gene MCL-1 thus regulating cell survival and sensitivity of lung cancer cells to chemotherapeutic agents. The efficacy of pre-miR-133b containing lipoplexes was evaluated in A549 non-small cell lung cancer (NSCLC) cells. Compared with siPORT NeoFX transfection agent, lipoplexes delivered pre-miR-133b in a more efficient manner with ~2.3-fold increase in mature miR-133b expression and ~1.8-fold difference in MCL-1 protein downregulation in vitro. In the in vivo biodistribution study, lipoplexes achieved ~30% accumulation in lung tissue, which was ~50-fold higher than siPORT NeoFX transfection agent. Mice treated with pre-miR-133b containing lipoplexes had mature miR-133b expression in lung ~52-fold higher than untreated mice. Our results demonstrated that cationic lipoplexes are a promising carrier system for the development of miRNA-based therapeutics in lung cancer treatment.
Molecular therapy. Nucleic acids | 2013
Yun Wu; Melissa Crawford; Yicheng Mao; Robert J. Lee; Ian C. Davis; Terry S. Elton; L. James Lee; Serge P. Nana-Sinkam
MicroRNA-29b (miR-29b) expression has been shown to be reduced in non-small–cell lung cancer (NSCLC) tissues. Here, we have identified the oncogene cyclin-dependent protein kinase 6 (CDK6) as a direct target of miR-29b in lung cancer. We hypothesized that in vivo restoration of miR-29b and thus targeting of genes important to tumor initiation and progression may represent an option for lung cancer treatment. We developed a cationic lipoplexes (LPs)-based carrier that efficiently delivered miR-29b both in vitro and in vivo. LPs containing miR-29b (LP-miR-29b) efficiently delivered miR-29b to NSCLC A549 cells, reduced the expression of key targets CDK6, DNMT3B, and myeloid cell leukemia sequence 1 (MCL1), as well as cell growth and clonogenicity of A549 cells. In addition, the IC50 for cisplatin in the miR-29b–treated cells was effectively reduced. In a xenograft murine model, LPs efficiently accumulated at tumor sites. Systemic delivery of LP-miR-29b increased the tumor miR-29b expression by approximately fivefold, downregulated the tumor mRNA expression of CDK6, DNMT3B, and MCL1 by ~57.4, ~40.5, and ~52.4%, respectively, and significantly inhibited tumor growth by ~60% compared with LP-miR-NC (negative control). Our results demonstrate that cationic LPs represent an efficient delivery system that holds great potential in the development of miRNA-based therapeutics for lung cancer treatment.
PLOS ONE | 2012
Fatemat Hassan; Gerard J. Nuovo; Melissa Crawford; Prosper N. Boyaka; Stephen Kirkby; Serge P. Nana-Sinkam; Estelle Cormet-Boyaka
The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3′UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients.
PLOS ONE | 2013
Michela Garofalo; Young Jun Jeon; Gerard J. Nuovo; Justin Middleton; Paola Secchiero; Pooja Joshi; Hansjuerg Alder; Natalya Nazaryan; Gianpiero Di Leva; Giulia Romano; Melissa Crawford; Patrick Nana-Sinkam; Carlo M. Croce
Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells.
Molecular Pharmacology | 2010
Eric I. Zimmerman; Claudia M. Dollins; Melissa Crawford; Steven Grant; Serge P. Nana-Sinkam; Kristy L. Richards; Scott M. Hammond; Lee M. Graves
Imatinib, a BCR-Abl inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). Despite the success of imatinib, multiple mechanisms of resistance remain a problem, including overexpression of Lyn kinase (Lyn) and Bcl-2 family antiapoptotic proteins. Profiling micro-RNA (miRNA) expression in a model of Lyn-mediated imatinib-resistant CML (MYL-R) identified approximately 30 miRNAs whose expression differed >2-fold compared with drug-sensitive MYL cells. In particular, the expression of the miR181 family (a–d) was significantly reduced (∼11- to 25-fold) in MYL-R cells. Incubation of MYL-R cells with a Lyn inhibitor (dasatinib) or nucleofection with Lyn-targeting short interfering RNA increased miR181b and miR181d expression. A similar Lyn-dependent regulation of miR181b and miR181d was observed in imatinib-resistant K562 CML cells. Sequence analysis of potential targets for miR181 regulation predicted myeloid cell leukemia-1 (Mcl-1), a Bcl-2 family member whose expression is increased in MYL-R cells and drug-resistant leukemias. Inhibition of Lyn or rescue of miR181b expression reduced Mcl-1 expression in the MYL-R cells. To further investigate the mechanism of Mcl-1 repression by miR181, a luciferase reporter construct incorporating the Mcl-1 3′-untranslated region was tested. Overexpression of miR181b reduced luciferase activity, whereas these effects were ablated by the mutation of the seed region of the miR181 target site. Finally, stimulation of Lyn expression by 1,25-dihydroxyvitamin D3 treatment in HL-60 cells, a cell model of acute myelogenous leukemia, decreased miR181b expression and increased Mcl-1 expression. In summary, our results suggest that Lyn-dependent regulation of miR181 is a novel mechanism of regulating Mcl-1 expression and cell survival.
Journal of Thoracic Oncology | 2009
Xin Wu; Melissa G. Piper-Hunter; Melissa Crawford; Gerard J. Nuovo; Clay B. Marsh; Gregory A. Otterson; Serge P. Nana-Sinkam
Lung cancer is the leading cause of cancer related deaths in the United States. It is estimated that in 2008 there were 215,000 new diagnoses of lung cancer and 163,000 deaths. Despite emerging technologies for potential early diagnosis and discovery of novel targeted therapies, the overall 5-year survival remains a disappointing 15%. Explanations for the poor survival include late presentation of disease, a lack of markers for early detection, and both phenotypic and genotypic heterogeneity within patients of similar histologic classification. To further understand this heterogeneity and thus complexity of lung cancer, investigators have applied various technologies including high throughput analysis of both the genome and proteome. Such approaches have been successful in identifying signatures that may clarify molecular differences in tumors, identify new targets, and improve prognostication. In the last decade, investigators have identified a new mode of gene regulation in the form of noncoding RNAs termed microRNAs (miRNAs or miRs). First determined to be of importance in larval development, microRNAs are approximately 19–22 nucleotide single stranded RNAs that regulate genes by either inducing mRNA degradation or inhibiting translation. MiRNAs have been implicated in several cellular processes including apoptosis, development, proliferation, and differentiation. By regulating hundreds of genes simultaneously, miRNAs have the capacity for regulation of biologic networks. Global alterations in miRNA expression in both solid organ and hematological malignancies suggest their importance in the pathogenesis of disease. To date, both in vivo and in vitro studies in lung cancer demonstrate a dysregulation of miRNA expression. Furthermore, investigators are beginning to identify individual targets and pathways of miRNAs relevant to lung tumorigenesis. Thus, miRNAs may identify critical targets and be important in the pathogenesis of lung cancer.
The FASEB Journal | 2012
Yan Huang; Melissa Crawford; Natalia Higuita-Castro; Patrick Nana-Sinkam; Samir N. Ghadiali
Mechanical ventilation generates biophysical forces, including high transmural pressures, which exacerbate lung inflammation. This study sought to determine whether microRNAs (miRNAs) respond to this mechanical force and play a role in regulating mechanically induced inflammation. Primary human small airway epithelial cells (HSAEpCs) were exposed to 12 h of oscillatory pressure and/or the proinflammatory cytokine TNF‐α. Experiments were also conducted after manipulating miRNA expression and silencing the transcription factor NF‐κB or toll‐like receptor proteins IRAK1 and TRAF6. NF‐κB activation, IL‐6/IL‐8/IL‐1 β cytokine secretion, miRNA expression, and IRAK1/TRAF6 protein levels were monitored. A total of 12 h of oscillatory pressure and TNF‐α resulted in a 5‐ to 7‐fold increase in IL‐6/IL‐8 cytokine secretion, and oscillatory pressure also resulted in a time‐dependent increase in IL‐6/IL‐8/IL‐1β cytokine secretion. Pressure and TNF‐α also resulted in distinct patterns of miRNA expression, with miR‐146a being the most deregulated miRNA. Manipulating miR‐146a expression altered pressure‐induced cytokine secretion. Silencing of IRAK1 or TRAF6, confirmed targets of miR‐146a, resulted in a 3‐fold decrease in pressure‐induced cytokine secretion. Cotransfection experiments demonstrate that miR‐146as regulation of pressure‐induced cytokine secretion depends on its targeting of both IRAK1 and TRAF6. MiR‐146a is a mechanosensitive miRNA that is rapidly up‐regulated by oscillatory pressure and plays an important role in regulating mechanically induced inflammation in lung epithelia.—Huang, Y., Crawford, M., Higuita‐Castro, N., Nana‐Sinkam, P., Ghadiali, S. N. miR‐146a regulates mechanotransduction and pressure‐induced inflammation in small airway epithelium. FASEB J. 26, 3351–3364 (2012). www.fasebj.org
American Journal of Physiology-lung Cellular and Molecular Physiology | 2012
Jessica R. Napolitano; Ming Jie Liu; Shengying Bao; Melissa Crawford; Patrick Nana-Sinkam; Estelle Cormet-Boyaka; Daren L. Knoell
Cadmium (Cd), a toxic heavy metal and carcinogen that is abundantly present in cigarette smoke, is a cause of smoking-induced lung disease. SLC39A8 (ZIP8), a zinc transporter, is a major portal for Cd uptake into cells. We have recently identified that ZIP8 expression is under the transcriptional control of the NF-κB pathway. On the basis of this, we hypothesized that cigarette-smoke induced inflammation would increase ZIP8 expression in lung epithelia, thereby enhancing Cd uptake and cell toxicity. Herein we report that ZIP8 is a central mediator of Cd-mediated toxicity. TNF-α treatment of primary human lung epithelia and A549 cells induced ZIP8 expression, resulting in significantly higher cell death attributable to both apoptosis and necrosis following Cd exposure. Inhibition of the NF-κB pathway and ZIP8 expression significantly reduced cell toxicity. Zinc (Zn), a known cytoprotectant, prevented Cd-mediated cell toxicity via ZIP8 uptake. Consistent with cell culture findings, a significant increase in ZIP8 mRNA and protein expression was observed in the lung of chronic smokers compared with nonsmokers. From these studies, we conclude that ZIP8 expression is induced in lung epithelia in an NF-κB-dependent manner, thereby resulting in increased cell death in the presence of Cd. From this we contend that ZIP8 plays a critical role at the interface between micronutrient (Zn) metabolism and toxic metal exposure (Cd) in the lung microenvironment following cigarette smoke exposure. Furthermore, dietary Zn intake, or a lack thereof, may be a contributing factor in smoking-induced lung disease.