Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa Garren is active.

Publication


Featured researches published by Melissa Garren.


Trends in Microbiology | 2009

Microbial disease and the coral holobiont.

David G. Bourne; Melissa Garren; Thierry M. Work; Eugene Rosenberg; Garriet W. Smith; C. Drew Harvell

Tropical coral reefs harbour a reservoir of enormous biodiversity that is increasingly threatened by direct human activities and indirect global climate shifts. Emerging coral diseases are one serious threat implicated in extensive reef deterioration through disruption of the integrity of the coral holobiont - a complex symbiosis between the coral animal, endobiotic alga and an array of microorganisms. In this article, we review our current understanding of the role of microorganisms in coral health and disease, and highlight the pressing interdisciplinary research priorities required to elucidate the mechanisms of disease. We advocate an approach that applies knowledge gained from experiences in human and veterinary medicine, integrated into multidisciplinary studies that investigate the interactions between host, agent and environment of a given coral disease. These approaches include robust and precise disease diagnosis, standardised ecological methods and application of rapidly developing DNA, RNA and protein technologies, alongside established histological, microbial ecology and ecological expertise. Such approaches will allow a better understanding of the causes of coral mortality and coral reef declines and help assess potential management options to mitigate their effects in the longer term.


The ISME Journal | 2014

A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals.

Melissa Garren; Kwangmin Son; Jean-Baptiste Raina; Roberto Rusconi; Filippo Menolascina; Orr H. Shapiro; Jessica Tout; David G. Bourne; Justin R. Seymour; Roman Stocker

Diseases are an emerging threat to ocean ecosystems. Coral reefs, in particular, are experiencing a worldwide decline because of disease and bleaching, which have been exacerbated by rising seawater temperatures. Yet, the ecological mechanisms behind most coral diseases remain unidentified. Here, we demonstrate that a coral pathogen, Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target the mucus of its coral host, Pocillopora damicornis. A primary driver of this response is the host metabolite dimethylsulfoniopropionate (DMSP), a key element in the global sulfur cycle and a potent foraging cue throughout the marine food web. Coral mucus is rich in DMSP, and we found that DMSP alone elicits chemotactic responses of comparable intensity to whole mucus. Furthermore, in heat-stressed coral fragments, DMSP concentrations increased fivefold and the pathogen’s chemotactic response was correspondingly enhanced. Intriguingly, despite being a rich source of carbon and sulfur, DMSP is not metabolized by the pathogen, suggesting that it is used purely as an infochemical for host location. These results reveal a new role for DMSP in coral disease, demonstrate the importance of chemical signaling and swimming behavior in the recruitment of pathogens to corals and highlight the impact of increased seawater temperatures on disease pathways.


PLOS ONE | 2009

Resilience of Coral-Associated Bacterial Communities Exposed to Fish Farm Effluent

Melissa Garren; Laurie Raymundo; James R. Guest; C. Drew Harvell; Farooq Azam

Background The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. Methodology & Principal Findings We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. Significance This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for improved aquaculture practices that can achieve both sustainable industry goals and long-term coral reef survival.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Vortical ciliary flows actively enhance mass transport in reef corals

Orr H. Shapiro; Vicente Fernández; Melissa Garren; Jeffrey S. Guasto; François P. Debaillon-Vesque; Esti Kramarsky-Winter; Assaf Vardi; Roman Stocker

Significance The fitness of corals and their ability to form large reefs hinge on their capacity to exchange oxygen and nutrients with their environment. Lacking gills or other ventilating organs, corals have been commonly assumed to depend entirely on ambient flow to overcome the mass transport limitations associated with molecular diffusion. Here, we show that corals are not enslaved to ambient flow but instead, can actively enhance mass transport by producing intense vortical flows with their epidermal cilia. By vigorously stirring the water immediately adjacent to their surface, this active process allows corals to increase mass transport and thus, can be a fundamental survival mechanism in regions or at times of weak ambient flow. The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.


Environmental Microbiology | 2012

New directions in coral reef microbial ecology

Melissa Garren; Farooq Azam

Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate.


Frontiers in Microbiology | 2015

Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis.

Jessica Tout; Nachshon Siboni; Lauren F. Messer; Melissa Garren; Roman Stocker; Nicole S. Webster; Peter J. Ralph; Justin R. Seymour

Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2–3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2–3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems.


Applied and Environmental Microbiology | 2010

New Method for Counting Bacteria Associated with Coral Mucus

Melissa Garren; Farooq Azam

ABSTRACT The ability to count bacteria associated with reef-building corals in a rapid, reliable, and cost-effective manner has been hindered by the viscous and highly autofluorescent nature of the coral mucus layer (CML) in which they live. We present a new method that disperses bacterial cells by trypsinization prior to 4′,6-diamidino-2-phenylindole (DAPI) staining and quantification by epifluorescence microscopy. We sampled seawater and coral mucus from Porites lobata from 6 reef sites influenced by wastewater intrusion and 2 reef sites unaffected by wastewater in Hawaii. Bacterial and zooxanthella abundances and cell sizes were quantified for each sample. Bacteria were more abundant in coral mucus (ranging from 5.3 × 105 ± 1.0 × 105 cells ml−1 to 1.8 × 106 ± 0.2 × 106 cells ml−1) than in the surrounding seawater (1.9 × 105 ± 0.1 × 105 cells ml−1 to 4.2 × 105 ± 0.2 × 105 cells ml−1), and the mucus-associated cells were significantly smaller than their seawater counterparts at all sites (P < 0.0001). The difference in cell size between mucus- and seawater-associated bacteria decreased at wastewater-influenced sites, where simultaneously mucus bacteria were larger and seawater bacteria were smaller than those at uninfluenced sites. The abundance of zooxanthellae in mucus ranged from 1.1 × 105 ± 0.1 × 105 cells ml−1 to 3.4 × 105 ± 0.3 × 105 cells ml−1. The frequency of dividing cells (FDC) was higher in the surrounding seawater than in mucus, despite finding that a 1,000-fold-higher zooxanthella biovolume than bacterial biovolume existed in the CML. Establishment of a standardized protocol for enumeration will provide the field of coral microbial ecology with the urgently needed ability to compare observations across studies and regions.


Philosophical Transactions of the Royal Society B | 2016

Managing marine disease emergencies in an era of rapid change

Maya L. Groner; Jeffrey A. Maynard; Rachel Breyta; Ryan B. Carnegie; Andrew P. Dobson; Carolyn S. Friedman; Brett Froelich; Melissa Garren; Frances M. D. Gulland; Scott F. Heron; Rachel T. Noble; Crawford W. Revie; Jeffrey D. Shields; Raphaël Vanderstichel; Ernesto Weil; Sandy Wyllie-Echeverria; C. Drew Harvell

Infectious marine diseases can decimate populations and are increasing among some taxa due to global change and our increasing reliance on marine environments. Marine diseases become emergencies when significant ecological, economic or social impacts occur. We can prepare for and manage these emergencies through improved surveillance, and the development and iterative refinement of approaches to mitigate disease and its impacts. Improving surveillance requires fast, accurate diagnoses, forecasting disease risk and real-time monitoring of disease-promoting environmental conditions. Diversifying impact mitigation involves increasing host resilience to disease, reducing pathogen abundance and managing environmental factors that facilitate disease. Disease surveillance and mitigation can be adaptive if informed by research advances and catalysed by communication among observers, researchers and decision-makers using information-sharing platforms. Recent increases in the awareness of the threats posed by marine diseases may lead to policy frameworks that facilitate the responses and management that marine disease emergencies require.


The ISME Journal | 2015

Chemotaxis by natural populations of coral reef bacteria

Jessica Tout; Thomas C. Jeffries; Katherina Petrou; Gene W. Tyson; Nicole S. Webster; Melissa Garren; Roman Stocker; Peter J. Ralph; Justin R. Seymour

Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral–microbe associations, which may ultimately influence the health and stability of the coral holobiont.


The ISME Journal | 2012

Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment

Melissa Garren; Farooq Azam

Understanding the mechanisms of resilience of coral reefs to anthropogenic stressors is a critical step toward mitigating their current global decline. Coral–bacteria associations are fundamental to reef health and disease, but direct observations of these interactions remain largely unexplored. Here, we use novel technology, high-speed laser scanning confocal microscopy on live coral (Pocillopora damicornis), to test the hypothesis that corals exert control over the abundance of their associated bacterial communities by releasing (‘shedding’) bacteria from their surface, and that this mechanism can counteract bacterial growth stimulated by organic inputs. We also test the hypothesis that the coral pathogen Vibrio coralliilyticus can evade such a defense mechanism. This first report of direct observation with high-speed confocal microscopy of living coral and its associated bacterial community revealed a layer (3.3–146.8 μm thick) on the coral surface where bacteria were concentrated. The results of two independent experiments showed that the bacterial abundance in this layer was not sensitive to enrichment (5 mg l−1 peptone), and that coral fragments exposed to enrichment released significantly more bacteria from their surfaces than control corals (P<0.01; 35.9±1.4 × 105 cells cm−2 coral versus 1.3±0.5 × 105 cells cm−2 coral). Our results provide direct support to the hypothesis that shedding bacteria may be an important mechanism by which coral-associated bacterial abundances are regulated under organic matter stress. Additionally, the novel ability to watch this ecological behavior in real-time at the microscale opens an unexplored avenue for mechanistic studies of coral–microbe interactions.

Collaboration


Dive into the Melissa Garren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farooq Azam

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicente Fernández

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David G. Bourne

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Orr H. Shapiro

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ernesto Weil

University of Puerto Rico at Mayagüez

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett Froelich

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge