Melissa Goggin
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melissa Goggin.
Chemico-Biological Interactions | 2011
James A. Swenberg; Narisa K. Bordeerat; Gunnar Boysen; Sujey Carro; Nadia I. Georgieva; Jun Nakamura; John M. Troutman; Patricia B. Upton; Richard J. Albertini; Pamela M. Vacek; Vernon E. Walker; Radim J. Sram; Melissa Goggin; Natalia Tretyakova
1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol). The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for major species differences in carcinogenicity. We have conducted extensive exposure-biomarker studies on mice, rats and humans. Using low exposures that range from current occupational levels to human exposures from tobacco smoke has provided evidence that mice are very different from humans, with mice forming ∼200 times more DEB than humans at exposures of 0.1-1.5ppm BD. While no gender differences have been noted in mice and rats for globin adducts or N-7 guanine adducts, female rats and mice had 2-3-fold higher Hprt mutations and DNA-DNA cross-links, suggesting a gender difference in DNA repair. Numerous molecular epidemiology studies have evaluated globin adducts and Hprt mutations, SCEs and chromosomal abnormalities. None of the blinded studies have shown evidence of human genotoxicity at current occupational exposures and studies of globin adducts have shown similar or lower formation of adducts in females than males. If one calculates the EB dose-equivalents for the three species, mice clearly differ from rats and humans, being ∼44 and 174 times greater than rats and humans, respectively. These data provide a scientific basis for improved risk assessment of BD.
Chemical Research in Toxicology | 2012
Natalia Tretyakova; Melissa Goggin; Dewakar Sangaraju; Gregory C. Janis
Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations and potentially contributing to the development of cancer. Because of their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples, including immunoassay, HPLC, and ³²P-postlabeling, isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adduct concentrations in biological samples are between 0.01-10 adducts per 10⁸ normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry, especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS, have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke.
Cancer Research | 2009
Melissa Goggin; James A. Swenberg; Vernon E. Walker; Natalia Tretyakova
1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen based on epidemiologic studies in occupationally exposed workers and animal studies in laboratory rats and mice. BD is metabolically activated to three epoxides that can react with nucleophilic sites in biomolecules. Among these, 1,2,3,4-diepoxybutane (DEB) is considered the ultimate carcinogen due to its high genotoxicity and mutagenicity attributed to its ability to form DNA-DNA cross-links. Our laboratory has developed quantitative high-performance liquid chromatography-muESI(+)-tandem mass spectrometry methods for two DEB-specific DNA-DNA cross-links, 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) and 1-(guan-7-yl)-4-(aden-1-yl)-2,3-butanediol (N7G-N1A-BD). This report describes molecular dosimetry analysis of these adducts in tissues of B6C3F1 mice and F344 rats exposed to a range of BD concentrations (0-625 ppm). Much higher (4- to 10-fold) levels of DEB-DNA cross-links were observed in mice compared with rats exposed to the same BD concentrations. In both species, bis-N7G-BD levels were 1.5- to 4-fold higher in the liver than in other tissues examined. Interestingly, tissues of female animals exposed to BD contained higher concentrations of bis-N7G-BD adducts than tissues of male animals, which is in accord with previously reported differences in tumor incidence. The molecular dosimetry data presented herein suggest that species and gender differences observed in BD-induced cancer are directly related to differences in the extent of BD metabolism to DEB. Furthermore, a rat model of sensitivity to BD may be more appropriate than a mouse model for assessing human risk associated with BD exposure, because rats and humans seem to be similar with respect to DEB formation.
Chemical Research in Toxicology | 2008
Melissa Goggin; Christopher D. Anderson; Soobong Park; James A. Swenberg; Vernon Walker; Natalia Tretyakova
1,3-Butadiene (BD) is an important industrial chemical used in the manufacture of rubber and plastics as well as an environmental pollutant present in automobile exhaust and cigarette smoke. It is classified as a known human carcinogen based on the epidemiological evidence in occupationally exposed workers and its ability to induce tumors in laboratory animals. BD is metabolically activated to several reactive species, including 1,2,3,4-diepoxybutane (DEB), which is hypothesized to be the ultimate carcinogenic species due to its bifunctional electrophilic nature and its ability to form DNA-DNA and DNA-protein cross-links. While 1,4- bis-(guan-7-yl)-2,3,-butanediol ( bis-N7G-BD) is the only type of DEB-specific DNA adduct previously quantified in vivo, four regioisomeric guanine-adenine (G-A) cross-links have been observed in vitro: 1-(guan-7-yl)-4-(aden-1-yl)-2,3-butanediol (N7G-N1A-BD), 1-(guan-7-yl)-4-(aden-3-yl)-2,3-butanediol (N7G-N3A-BD), 1-(guan-7-yl)-4-(aden-7-yl)-2,3-butanediol (N7G-N7A-BD), and 1-(guan-7-yl)-4-(aden-6-yl)-2,3-butanediol (N7G-N (6)A-BD) ( Park ( 2004) Chem. Res. Toxicol. 17, 1638- 1651 ). The goal of the present work was to develop an isotope dilution HPLC-positive mode electrospray ionization-tandem mass spectrometry (HPLC-ESI (+)-MS/MS) method for the quantitative analysis of G-A DEB cross-links in DNA extracted from BD-exposed laboratory animals. In our approach, G-A butanediol conjugates are released from the DNA backbone by thermal or mild acid hydrolysis. Following solid-phase extraction, samples are subjected to capillary HPLC-ESI (+)-MS/MS analysis with (15)N 3, (13)C 1-labeled internal standards. The detection limit of our current method is 0.6-1.5 adducts per 10 (8) normal nucleotides. The new method was validated by spiking G-A cross-link standards (10 fmol each) into control mouse DNA (0.1 mg), followed by sample processing and HPLC-ESI (+)-MS/MS analysis. The accuracy and precision were calculated as 105 +/- 17% for N7G-N3A-BD, 102 +/- 25% for N7G-N7A-BD, and 79 +/- 11% for N7G-N (6)A-BD. The regioisomeric G-A DEB adducts were formed in a concentration-dependent manner in DEB-treated calf thymus DNA, with N7G-N1A-BD found in the highest amounts. Under physiological conditions, N7G-N1A-BD underwent Dimroth rearrangement to N7G-N (6)A-BD ( t 1/2 = 114 h), while hydrolytic deamination of N7G-N1A-BD to the corresponding hypoxanthine lesion was insignificant. We found that for in vivo samples, a greater sensitivity could be achieved if N7G-N1A-BD adducts were converted to the corresponding N7G-N (6)A-BD lesions by forced Dimroth rearrangement. Liver DNA extracted from female B6C3F1 mice that underwent inhalation exposure to 625 ppm BD for 2 weeks contained 3.1 +/- 0.6 N7G-N1A-BD adducts per 10 (8) nucleotides ( n = 5) (quantified as N7G-N (6)A-BD following base-induced Dimroth rearrangement), while the amounts of N7G-N3A-BD and N7G-N7A-BD were below the detection limit of our method. None of the G-A cross-links was present in control animals. The formation of N7G-N1A-BD cross-links may contribute to the induction of AT base pair mutations following exposure to BD. Quantitative methods presented here may be used not only for studies of biological significance in animal models but potentially to predict risk associated with human exposure to BD.
Chemical Research in Toxicology | 2011
Melissa Goggin; Dewakar Sangaraju; Vernon E. Walker; Jeffrey K. Wickliffe; James A. Swenberg; Natalia Tretyakova
1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen. The mechanism of BD-mediated cancer is of significant interest because of the widespread exposure of humans to BD from cigarette smoke and urban air. BD is metabolically activated to 1,2,3,4-diepoxybutane (DEB), which is a highly genotoxic and mutagenic bis-alkylating agent believed to be the ultimate carcinogenic species of BD. We have previously identified several types of DEB-specific DNA adducts, including bis-N7-guanine cross-links (bis-N7-BD), N(6)-adenine-N7-guanine cross-links (N(6)A-N7G-BD), and 1,N(6)-dA exocyclic adducts. These lesions were detected in tissues of laboratory rodents exposed to BD by inhalation ( Goggin et al. (2009) Cancer Res. 69 , 2479 -2486 ). In the present work, persistence and repair of bifunctional DEB-DNA adducts in tissues of mice and rats exposed to BD by inhalation were investigated. The half-lives of the most abundant cross-links, bis-N7G-BD, in mouse liver, kidney, and lungs were 2.3-2.4 days, 4.6-5.7 days, and 4.9 days, respectively. The in vitro half-lives of bis-N7G-BD were 3.5 days (S,S isomer) and 4.0 days (meso isomer) due to their spontaneous depurination. In contrast, tissue concentrations of the minor DEB adducts, N7G-N1A-BD and 1,N(6)-HMHP-dA, remained essentially unchanged during the course of the experiment, with an estimated t(1/2) of 36-42 days. No differences were observed between DEB-DNA adduct levels in BD-treated wild type mice and the corresponding animals deficient in methyl purine glycosylase or the Xpa gene. Our results indicate that DEB-induced N7G-N1A-BD and 1,N(6)-HMHP-dA adducts persist in vivo, potentially contributing to mutations and cancer observed as a result of BD exposure.
Journal of Analytical Toxicology | 2012
David Le; Melissa Goggin; Gregory C. Janis
The leaves of the South Asian plant kratom are described as having stimulating effects at low doses, and opiate-like analgesic and euphoric effects at high doses. A long history of use and abuse has led to the classification of kratom as a controlled substance in its native Thailand and other South Asian countries. However, kratom is not controlled in the United States, and the ready availability of kratom has led to its emergence as an herbal drug of abuse. With the growing popularity of kratom, efficient procedures are needed to detect kratom use. In the current study, both ultra-high-performance liquid chromatography and high-performance liquid chromatography-tandem mass spectrometry methods have been developed and validated for monitoring the major alkaloids and metabolites found in urine following kratom use. The primary unique alkaloid mitragynine is quantified in human urine from 1.00-500.00 ng/mL using mitraphylline as an internal standard. In addition, two metabolites (5-desmethylmitragynine and 17-desmethyldihydromitragynine) and the related active, alkaloid 7-hydroxy-mitragynine, are simultaneously qualitatively monitored. The presence of analytes are confirmed by an information-dependent acquisition-enhanced product ion procedure generating full fragmentation data used to positively identify detected analytes. The validated method has been utilized for clinical and forensic analyses of urine for the detection of kratom use.
Journal of Analytical Toxicology | 2017
Melissa Goggin; An Nguyen; Gregory C. Janis
The illicit drug market has seen an increase in designer opioids, including fentanyl and methadone analogs, and other structurally unrelated opioid agonists. The designer opioid, furanyl fentanyl, is one of many fentanyl analogs clandestinely synthesized for recreational use and contributing to the fentanyl and opioid crisis. A method has been developed and validated for the analysis of furanyl fentanyl and furanyl norfentanyl in urine specimens from pain management programs. Approximately 10% of samples from a set of 500 presumptive heroin-positive urine specimens were found to contain furanyl fentanyl, with an average concentration of 33.8 ng/mL, and ranging from 0.26 to 390 ng/mL. Little to no furanyl norfentanyl was observed; therefore, the furanyl fentanyl specimens were further analyzed by untargeted high-resolution mass spectrometry to identify other metabolites. Multiple metabolites, including a dihydrodiol metabolite, 4-anilino-N-phenethyl-piperidine (4-ANPP) and a sulfate metabolite were identified. The aim of the presented study was to identify the major metabolite(s) of furanyl fentanyl and estimate their concentrations for the purpose of toxicological monitoring.
Chemical Research in Toxicology | 2013
Dewakar Sangaraju; Peter W. Villalta; Melissa Goggin; Maria O. Agunsoye; Colin Campbell; Natalia Tretyakova
1,3-Butadiene (BD) is a high volume industrial chemical commonly used in polymer and rubber production. It is also present in cigarette smoke, automobile exhaust, and urban air, leading to widespread exposure of human populations. Upon entering the body, BD is metabolized to electrophilic epoxides, 3,4-epoxy-1-butene (EB), diepoxybutane (DEB), and 3,4-epoxy-1,2-diol (EBD), which can alkylate DNA nucleobases. The most abundant BD epoxide, EBD, modifies the N7-guanine positions in DNA to form N7-(2, 3, 4-trihydroxybut-1-yl) guanine (N7-THBG) adducts, which can be useful as biomarkers of BD exposure and metabolic activation to DNA-reactive epoxides. In the present work, a capillary HPLC-high resolution ESI⁺-MS/MS (HPLC-ESI⁺-HRMS/MS) methodology was developed for accurate, sensitive, and reproducible quantification of N7-THBG in cell culture and in human white blood cells. In our approach, DNA is subjected to neutral thermal hydrolysis to release N7-guanine adducts from the DNA backbone, followed by ultrafiltration, solid-phase extraction, and isotope dilution HPLC-ESI⁺-HRMS/MS analysis on an Orbitrap Velos mass spectrometer. Following method validation, N7-THBG was quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of DEB and in DNA isolated from blood of smokers, nonsmokers, individuals participating in a smoking cessation program, and occupationally exposed workers. N7-THBG concentrations increased linearly from 31.4 ± 4.84 to 966.55 ± 128.05 adducts per 10⁹ nucleotides in HT1080 cells treated with 1-100 μM DEB. N7-THBG amounts in leukocyte DNA of nonsmokers, smokers, and occupationally exposed workers were 7.08 ± 5.29, 8.20 ± 5.12, and 9.72 ± 3.80 adducts per 10⁹ nucleotides, respectively, suggesting the presence of an endogenous or environmental source for this adduct. The availability of sensitive HPLC-ESI⁺-HRMS/MS methodology for BD-induced DNA adducts in humans will enable future population studies of interindividual and ethnic differences in BD bioactivation to DNA-reactive epoxides.
Journal of Biological Chemistry | 2012
Srikanth Kotapati; Leena Maddukuri; Susith Wickramaratne; Uthpala Seneviratne; Melissa Goggin; Matthew G. Pence; Peter W. Villalta; F. Peter Guengerich; Lawrence J. Marnett; Natalia Tretyakova
Background: 1,N6-(2-Hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (1,N6-γ-HMHP-dA) adducts are formed in DNA by 1,2,3,4-diepoxybutane (metabolite of human carcinogen 1,3-butadiene). Results: hpols η and κ carry out translesion synthesis, incorporating T, G, or A opposite the 1,N6-γ-HMHP-dA adduct. Conclusion: Translesion bypass of 1,N6-γ-HMHP-dA adducts by TLS polymerases is error-prone. Significance: This study identifies 1,N6-γ-HMHP-dA as the DNA adduct potentially responsible for A→T and A→C transversions and deletions induced by 1,3-butadiene. The 1,N6-(2-Hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (1,N6-γ-HMHP-dA) adducts are formed upon bifunctional alkylation of adenine nucleobases in DNA by 1,2,3,4-diepoxybutane, the putative ultimate carcinogenic metabolite of 1,3-butadiene. The presence of a substituted 1,N6-propano group on 1,N6-γ-HMHP-dA is expected to block the Watson-Crick base pairing of the adducted adenine with thymine, potentially contributing to mutagenesis. In this study, the enzymology of replication past site-specific 1,N6-γ-HMHP-dA lesions in the presence of human DNA polymerases (hpols) β, η, κ, and ι and archebacterial polymerase Dpo4 was investigated. Run-on gel analysis with all four dNTPs revealed that hpol η, κ, and Dpo4 were able to copy the modified template. In contrast, hpol ι inserted a single base opposite 1,N6-γ-HMHP-dA but was unable to extend beyond the damaged site, and a complete replication block was observed with hpol β. Single nucleotide incorporation experiments indicated that although hpol η, κ, and Dpo4 incorporated the correct nucleotide (dTMP) opposite the lesion, dGMP and dAMP were inserted with a comparable frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed the ability of bypass polymerases to insert dTMP, dAMP, or dGMP opposite 1,N6-γ-HMHP-dA and detected large amounts of −1 and −2 deletion products. Taken together, these results indicate that hpol η and κ enzymes bypass 1,N6-γ-HMHP-dA lesions in an error-prone fashion, potentially contributing to A→T and A→C transversions and frameshift mutations observed in cells following treatment with 1,2,3,4-diepoxybutane.
Bioanalysis | 2011
Melissa Goggin; Stephanie D Gozum; David M Burrows; An Nguyen; Henry F Corcoran; Heather Dotzauer; Cheng-Min Tann; Richard Lundberg; Gregory C. Janis
BACKGROUND Patients with iron-deficiency anemia benefit from intravenous iron therapies. Development of these pharmaceutical agents requires pharmacokinetic studies monitoring levels of both the administered agent and transferrin-bound iron (TBI). Successful pharmacokinetic methods must discriminate iron species. RESULTS Routine colorimetric procedures were used to reliably measure total iron and TBI following iron-sucrose administration. Iron was liberated from iron-sucrose allowing the determination of all circulating iron. Solid-phase sample processing allowed the measurement of TBI. Circulating iron-sucrose could then be calculated as the difference between total iron and TBI. CONCLUSION A reproducible and robust spectrophotometric method was developed and validated for measuring total iron and TBI in human serum following iron-sucrose therapy.