Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa H. Brown is active.

Publication


Featured researches published by Melissa H. Brown.


Microbiology and Molecular Biology Reviews | 2002

Regulation of Bacterial Drug Export Systems

Steve Grkovic; Melissa H. Brown; Ronald A. Skurray

SUMMARY The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.


The EMBO Journal | 2002

Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR

Maria A. Schumacher; Marshall C. Miller; Steve Grkovic; Melissa H. Brown; Ronald A. Skurray; Richard G. Brennan

The Staphylococcus aureus multidrug‐binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by multiple structurally dissimilar drugs. QacR is a member of the TetR/CamR family of transcriptional regulators, which share highly homologous N‐terminal DNA‐binding domains connected to seemingly non‐homologous ligand‐binding domains. Unlike other TetR members, which bind ∼15 bp operators, QacR recognizes an unusually long 28 bp operator, IR1, which it appears to bind cooperatively. To elucidate the DNA‐binding mechanism of QacR, we determined the 2.90 Å resolution crystal structure of a QacR–IR1 complex. Strikingly, our data reveal that the DNA recognition mode of QacR is distinct from TetR and involves the binding of a pair of QacR dimers. In this unique binding mode, recognition at each IR1 half‐site is mediated by a complement of DNA contacts made by two helix–turn–helix motifs. The inferred cooperativity does not arise from cross‐dimer protein–protein contacts, but from the global undertwisting and major groove widening elicited by the binding of two QacR dimers.


Journal of Biological Chemistry | 1998

QACR IS A REPRESSOR PROTEIN THAT REGULATES EXPRESSION OF THE STAPHYLOCOCCUS AUREUS MULTIDRUG EFFLUX PUMP QACA

Steve Grkovic; Melissa H. Brown; Natalie J. Roberts; Ian T. Paulsen; Ronald A. Skurray

The Staphylococcus aureus QacA protein is a multidrug transporter that confers resistance to a broad range of antimicrobial agents via proton motive force-dependent efflux of the compounds. Primer extension analysis was performed to map the transcription start points of theqacA and divergently transcribed qacRmRNAs. Each gene utilized a single promoter element, the locations of which were confirmed by site-directed mutagenesis. Fusions of theqacA and qacR promoters to a chloramphenicol acetyl transferase reporter gene were used to demonstrate that QacR is a trans-acting repressor of qacA transcription that does not autoregulate its own expression. An inverted repeat overlapping the qacA transcription start site was shown to be the operator sequence for control of qacA gene expression. Removal of one half of the operator prevented QacR-mediated repression of the qacA promoter. Purified QacR protein bound specifically to this operator sequence in DNase I-footprinting experiments. Importantly, addition of diverse QacA substrates was shown to induce qacA expression in vivo, as well as inhibit binding of QacR to operator DNA in vitro, by using gel-mobility shift assays. QacR therefore appears to interact directly with structurally dissimilar inducing compounds that are substrates of the QacA multidrug efflux pump.


Infection and Immunity | 2000

In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity

Arnold S. Bayer; Rajendra Prasad; Jyotsna Chandra; Anjni Koul; M. Smriti; Archana Varma; Ronald A. Skurray; Nevillem Firth; Melissa H. Brown; Su-Pin Koo; Michael R. Yeaman

ABSTRACT Platelet microbicidal proteins (PMPs) are small, cationic peptides which possess potent microbicidal activities against common bloodstream pathogens, such as Staphylococcus aureus. We previously showed that S. aureus strains exhibiting resistance to thrombin-induced PMP (tPMP-1) in vitro have an enhanced capacity to cause human and experimental endocarditis (T. Wu, M. R. Yeaman, and A. S. Bayer, Antimicrob. Agents Chemother. 38:729–732, 1994; A. S. Bayer et al., Antimicrob. Agents Chemother. 42:3169–3172, 1998; V. K. Dhawan et al., Infect. Immun. 65:3293–3299, 1997). However, the mechanisms mediating tPMP-1 resistance in S. aureus are not fully delineated. The S. aureus cell membrane appears to be a principal target for the action of tPMP-1. To gain insight into the basis of tPMP-1 resistance, we compared several parameters of membrane structure and function in three tPMP-1-resistant (tPMP-1r) strains and their genetically related, tPMP-1-susceptible (tPMP-1s) counterpart strains. The tPMP-1rstrains were derived by three distinct methods: transposon mutagenesis, serial passage in the presence of tPMP-1 in vitro, or carriage of a naturally occurring multiresistance plasmid (pSK1). All tPMP-1r strains were found to possess elevated levels of longer-chain, unsaturated membrane lipids, in comparison to their tPMP-1s counterparts. This was reflected in corresponding differences in cell membrane fluidity in the strain pairs, with tPMP-1r strains exhibiting significantly higher degrees of fluidity as assessed by fluorescence polarization. These data provide further support for the concept that specific alterations in the cytoplasmic membrane of S. aureus strains are associated with tPMP-1 resistance in vitro.


BMC Genomics | 2011

Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions

Bart A. Eijkelkamp; Karl A. Hassan; Ian T. Paulsen; Melissa H. Brown

BackgroundIron acquisition systems are important virulence factors in pathogenic bacteria. To identify these systems in Acinetobacter baumannii, the transcriptomic response of the completely sequenced strain ATCC 17978 under iron limiting conditions was investigated using a genomic microarray that contained probes for all annotated open reading frames.ResultsUnder low iron conditions, transcription levels were more than 2-fold up-regulated for 463 genes, including 95 genes that were up-regulated more than 4-fold. Of particular significance, three siderophore biosynthesis gene clusters, including one novel cluster, were highly up-regulated. Binding sites for the ferric uptake regulator were identified in the promoter regions of many up-regulated genes, suggesting a prominent role for this regulator in the Acinetobacter iron acquisition response. Down-regulation under iron limitation was less dramatic as the transcription of only 202 genes varied more than 2-fold. Various genes involved in motility featured prominently amongst the genes down-regulated when iron was less readily available. Motility assays confirmed that these transcriptional changes are manifested at the phenotypic level. The siderophore biosynthesis gene clusters were further investigated by means of comparative genomic analysis of 10 sequenced Acinetobacter isolates. These analyses revealed important roles for mobile genetic elements in shaping the siderophore meditated iron acquisition mechanisms between different Acinetobacter strains.ConclusionsA. baumannii grown under iron limited conditions resulted in major transcriptional changes of not only many iron acquisition related genes, but also genes involved in other processes such as motility. Overall, this study showed that A. baumannii is well adaptable to growth in an environment which has limiting iron availability.


Journal of Biological Chemistry | 1999

Bioenergetics of the Staphylococcal Multidrug Export Protein QacA IDENTIFICATION OF DISTINCT BINDING SITES FOR MONOVALENT AND DIVALENT CATIONS

Bernadette Mitchell; Ian T. Paulsen; Melissa H. Brown; Ronald A. Skurray

The multidrug efflux pump QacA fromStaphylococcus aureus confers resistance to an extensive range of structurally dissimilar compounds. Fluorimetric analyses demonstrated that QacA confers resistance to the divalent cation 4′,6-diamidino-2-phenylindole, utilizing a proton motive force-dependent efflux mechanism previously demonstrated for QacA-mediated resistance to the monovalent cation ethidium. Both the ionophores nigericin and valinomycin inhibited QacA-mediated export of ethidium, indicating an electrogenic drug/nH+ (n ≥ 2) antiport mechanism. The kinetic parameters, K m andV max, were determined for QacA-mediated export of four fluorescent substrates, 4′,6-diamidino-2-phenylindole, 3′,3′-dipropyloxacarbocyanine, ethidium, and pyronin Y. Competition studies showed that QacA-mediated ethidium export is competitively inhibited by monovalent cations, e.g. benzalkonium, and non-competitively inhibited by divalent cations, e.g.propamidine, which suggests that monovalent and divalent cations bind at distinct sites on the QacA protein. The quaternary ammonium salt, 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, was used as a membrane-specific fluorescence probe and demonstrated that the amount of substrate entering the inner leaflet was significantly reduced in QacA-containing strains, supporting the notion that the substrate is extruded directly from the membrane.


Journal of Molecular Microbiology and Biotechnology | 2011

Antimicrobial peptides: promising alternatives to conventional antibiotics.

Sylvia A. Baltzer; Melissa H. Brown

Antimicrobial peptides (APs) have been described as evolutionary ancient weapons. Produced by a wide variety of organisms as part of a non-specific immune response, these peptides are involved in the direct destruction of various microorganisms. Several APs have been shown to have broad activity spectra against microorganisms such as Gram-positive and Gram-negative bacteria, enveloped viruses, fungi and parasites. Given that resistance to a number of antibiotics has developed in a wide range of microbes, the potential of APs as novel therapeutic agents is being evaluated. However, optimisation of APs designed for therapy will need to focus on such factors as their susceptibility to proteolytic degradation and reduction of toxicity to mammalian cells. Strict guidelines pertaining to their use should also be established to prevent or hinder future development of bacterial resistance to such peptides.


Fems Microbiology Letters | 2011

Adherence and motility characteristics of clinical Acinetobacter baumannii isolates

Bart A. Eijkelkamp; Uwe H. Stroeher; Karl A. Hassan; Michael S. Papadimitrious; Ian T. Paulsen; Melissa H. Brown

Acinetobacter baumannii continues to be a major health problem especially in hospital settings. Herein, features that may play a role in persistence and disease potential were investigated in a collection of clinical A. baumannii strains from Australia. Twitching motility was found to be a common trait in A. baumannii international clone I strains and in abundant biofilm formers, whereas swarming motility was only observed in isolates not classified within the international clone lineages. Bioinformatic analysis of the type IV fimbriae revealed a correlation between PilA sequence homology and motility. A high level of variability in adherence to both abiotic surfaces and epithelial cells was found. We report for the first time the motility characteristics of a large number of A. baumannii isolates and present a direct comparison of A. baumannii binding to nasopharyngeal and lung epithelial cells.


Journal of Bacteriology | 2001

The Staphylococcal QacR Multidrug Regulator Binds a Correctly Spaced Operator as a Pair of Dimers

Steve Grkovic; Melissa H. Brown; Maria A. Schumacher; Richard G. Brennan; Ronald A. Skurray

Expression of the Staphylococcus aureus plasmid-encoded QacA multidrug transporter is regulated by the divergently encoded QacR repressor protein. To circumvent the formation of disulfide-bonded degradation products, site-directed mutagenesis to replace the two cysteine residues in wild-type QacR was undertaken. Analysis of a resultant cysteineless QacR derivative indicated that it retained full DNA-binding activities in vivo and in vitro and continued to be fully proficient for the mediation of induction of qacA expression in response to a range of structurally dissimilar multidrug transporter substrates. The cysteineless QacR protein was used in cross-linking and dynamic light-scattering experiments to show that its native form was a dimer, whereas gel filtration indicated that four QacR molecules bound per DNA operator site. The addition of inducing compounds led to the dissociation of the four operator-bound QacR molecules from the DNA as dimers. Binding of QacR dimers to DNA was found to be dependent on the correct spacing of the operator half-sites. A revised model proposed for the regulation of qacA expression by QacR features the unusual characteristic of one dimer of the regulatory protein binding to each operator half-site by a process that does not appear to require the prior self-assembly of QacR into tetramers.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins

Karl A. Hassan; Scott M. Jackson; Anahit Penesyan; Simon G. Patching; Sasha G. Tetu; Bart A. Eijkelkamp; Melissa H. Brown; Peter J. F. Henderson; Ian T. Paulsen

Significance Drug resistance is an increasing problem in clinical settings with some bacterial pathogens now resistant to virtually all available drugs. Chlorhexidine is a commonly used antiseptic and disinfectant in hospital environments, and there is increasing resistance to chlorhexidine seen in some pathogenic bacteria, such as Acinetobacter baumannii. This paper examines the global gene expression of A. baumannii in response to chlorhexidine exposure and identifies a gene that we demonstrate to mediate chlorhexidine resistance. Biochemical investigation reveals that this gene encodes a previously uncharacterized type of drug efflux pump that actively transports chlorhexidine out of the cell. Chlorhexidine is widely used as an antiseptic or disinfectant in both hospital and community settings. A number of bacterial species display resistance to this membrane-active biocide. We examined the transcriptomic response of a representative nosocomial human pathogen, Acinetobacter baumannii, to chlorhexidine to identify the primary chlorhexidine resistance elements. The most highly up-regulated genes encoded components of a major multidrug efflux system, AdeAB. The next most highly overexpressed gene under chlorhexidine stress was annotated as encoding a hypothetical protein, named here as AceI. Orthologs of the aceI gene are conserved within the genomes of a broad range of proteobacterial species. Expression of aceI or its orthologs from several other γ- or β-proteobacterial species in Escherichia coli resulted in significant increases in resistance to chlorhexidine. Additionally, disruption of the aceI ortholog in Acinetobacter baylyi rendered it more susceptible to chlorhexidine. The AceI protein was localized to the membrane after overexpression in E. coli. This protein was purified, and binding assays demonstrated direct and specific interactions between AceI and chlorhexidine. Transport assays using [14C]-chlorhexidine determined that AceI was able to mediate the energy-dependent efflux of chlorhexidine. An E15Q AceI mutant with a mutation in a conserved acidic residue, although unable to mediate chlorhexidine resistance and transport, was still able to bind chlorhexidine. Taken together, these data are consistent with AceI being an active chlorhexidine efflux protein and the founding member of a family of bacterial drug efflux transporters.

Collaboration


Dive into the Melissa H. Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian T. Paulsen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge