Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa J. Ward is active.

Publication


Featured researches published by Melissa J. Ward.


Science | 2014

The early spread and epidemic ignition of HIV-1 in human populations

Nuno Rodrigues Faria; Andrew Rambaut; Marc A. Suchard; Guy Baele; Trevor Bedford; Melissa J. Ward; Andrew J. Tatem; Joao Sousa; Nimalan Arinaminpathy; Jacques Pépin; David Posada; Martine Peeters; Oliver G. Pybus; Philippe Lemey

The hidden history of the HIV pandemic Rail and river transport in 1960s Congo, combined with the sexual revolution and changes in health care practices, primed the HIV pandemic. Faria et al. unpick the circumstances surrounding the ascendancy of HIV from its origins before 1920 in chimpanzee hunters in the Cameroon to amplification in Kinshasa. Around 1960, rail links promoted the spread of the virus to mining areas in southeastern Congo and beyond. Ultimately, HIV crossed the Atlantic in Haitian teachers returning home. From those early events, a pandemic was born. Science, this issue p. 56 The early history of HIV centered on Kinshasa before accelerating in 1960 as a result of seismic social change after independence. Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations.


Genetics | 2009

Phylodynamics of Infectious Disease Epidemics

Erik M. Volz; Sergei L. Kosakovsky Pond; Melissa J. Ward; Andrew Leigh Brown; Simon D. W. Frost

We present a formalism for unifying the inference of population size from genetic sequences and mathematical models of infectious disease in populations. Virus phylogenies have been used in many recent studies to infer properties of epidemics. These approaches rely on coalescent models that may not be appropriate for infectious diseases. We account for phylogenetic patterns of viruses in susceptible–infected (SI), susceptible–infected–susceptible (SIS), and susceptible–infected–recovered (SIR) models of infectious disease, and our approach may be a viable alternative to demographic models used to reconstruct epidemic dynamics. The method allows epidemiological parameters, such as the reproductive number, to be estimated directly from viral sequence data. We also describe patterns of phylogenetic clustering that are often construed as arising from a short chain of transmissions. Our model reproduces the moments of the distribution of phylogenetic cluster sizes and may therefore serve as a null hypothesis for cluster sizes under simple epidemiological models. We examine a small cross-sectional sample of human immunodeficiency (HIV)-1 sequences collected in the United States and compare our results to standard estimates of effective population size. Estimated prevalence is consistent with estimates of effective population size and the known history of the HIV epidemic. While our model accurately estimates prevalence during exponential growth, we find that periods of decline are harder to identify.


Philosophical Transactions of the Royal Society B | 2015

Antimicrobial resistance in humans, livestock and the wider environment

Mark E. J. Woolhouse; Melissa J. Ward; Bram A. D. van Bunnik; Jeremy Farrar

Antimicrobial resistance (AMR) in humans is inter-linked with AMR in other populations, especially farm animals, and in the wider environment. The relatively few bacterial species that cause disease in humans, and are the targets of antibiotic treatment, constitute a tiny subset of the overall diversity of bacteria that includes the gut microbiota and vast numbers in the soil. However, resistance can pass between these different populations; and homologous resistance genes have been found in pathogens, normal flora and soil bacteria. Farm animals are an important component of this complex system: they are exposed to enormous quantities of antibiotics (despite attempts at reduction) and act as another reservoir of resistance genes. Whole genome sequencing is revealing and beginning to quantify the two-way traffic of AMR bacteria between the farm and the clinic. Surveillance of bacterial disease, drug usage and resistance in livestock is still relatively poor, though improving, but achieving better antimicrobial stewardship on the farm is challenging: antibiotics are an integral part of industrial agriculture and there are very few alternatives. Human production and use of antibiotics either on the farm or in the clinic is but a recent addition to the natural and ancient process of antibiotic production and resistance evolution that occurs on a global scale in the soil. Viewed in this way, AMR is somewhat analogous to climate change, and that suggests that an intergovernmental panel, akin to the Intergovernmental Panel on Climate Change, could be an appropriate vehicle to actively address the problem.


PLOS Computational Biology | 2012

Simple Epidemiological Dynamics Explain Phylogenetic Clustering of HIV from Patients with Recent Infection

Erik M. Volz; James S. Koopman; Melissa J. Ward; Andrew Leigh Brown; Simon D. W. Frost

Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics. Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (‘excess clustering’) and also tend to cluster with other recent HIV infections rather than chronic, established infections (‘excess co-clustering’), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled.


Journal of Virology | 2009

Detection of Mammalian Virulence Determinants in Highly Pathogenic Avian Influenza H5N1 Viruses: Multivariate Analysis of Published Data

Samantha Lycett; Melissa J. Ward; Fraser Lewis; Art F. Y. Poon; S. L. Kosakovsky Pond; A. J. Leigh Brown

ABSTRACT Highly pathogenic avian influenza (HPAI) virus H5N1 infects water and land fowl and can infect and cause mortality in mammals, including humans. However, HPAI H5N1 strains are not equally virulent in mammals, and some strains have been shown to cause only mild symptoms in experimental infections. Since most experimental studies of the basis of virulence in mammals have been small in scale, we undertook a meta-analysis of available experimental studies and used Bayesian graphical models (BGM) to increase the power of inference. We applied text-mining techniques to identify 27 individual studies that experimentally determined pathogenicity in HPAI H5N1 strains comprising 69 complete genome sequences. Amino acid sequence data in all 11 genes were coded as binary data for the presence or absence of mutations related to virulence in mammals or nonconsensus residues. Sites previously implicated as virulence determinants were examined for association with virulence in mammals in this data set, and the sites with the most significant association were selected for further BGM analysis. The analyses show that virulence in mammals is a complex genetic trait directly influenced by mutations in polymerase basic 1 (PB1) and PB2, nonstructural 1 (NS1), and hemagglutinin (HA) genes. Several intra- and intersegment correlations were also found, and we postulate that there may be two separate virulence mechanisms involving particular combinations of polymerase and NS1 mutations or of NS1 and HA mutations.


Nature Genetics | 2015

A single natural nucleotide mutation alters bacterial pathogen host tropism

David Viana; María Comos; Paul R. McAdam; Melissa J. Ward; Laura Selva; Caitriona M. Guinane; Beatriz M González-Muñoz; Anne Tristan; Simon J. Foster; J. Ross Fitzgerald; José R. Penadés

The capacity of microbial pathogens to alter their host tropism leading to epidemics in distinct host species populations is a global public and veterinary health concern. To investigate the molecular basis of a bacterial host-switching event in a tractable host species, we traced the evolutionary trajectory of the common rabbit clone of Staphylococcus aureus. We report that it evolved through a likely human-to-rabbit host jump over 40 years ago and that only a single naturally occurring nucleotide mutation was required and sufficient to convert a human-specific S. aureus strain into one that could infect rabbits. Related mutations were identified at the same locus in other rabbit strains of distinct clonal origin, consistent with convergent evolution. This first report of a single mutation that was sufficient to alter the host tropism of a microorganism during its evolution highlights the capacity of some pathogens to readily expand into new host species populations.


PLOS Neglected Tropical Diseases | 2013

Phylogeography of Japanese Encephalitis Virus: Genotype Is Associated with Climate

Amy J. Schuh; Melissa J. Ward; Andrew Leigh Brown; Alan D. T. Barrett

The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate.


Journal of Virology | 2014

Dynamics of the Emergence and Establishment of a Newly Dominant Genotype of Japanese Encephalitis Virus throughout Asia

Amy J. Schuh; Melissa J. Ward; Andrew Leigh Brown; Alan D. T. Barrett

ABSTRACT In recent years, genotype I (GI) of Japanese encephalitis virus (JEV) has displaced genotype III (GIII) as the dominant virus genotype throughout Asia. In this study, the largest collection of GIII and GI envelope gene-derived viral sequences assembled to date was used to reconstruct the spatiotemporal chronology of genotype displacement throughout Asia and to determine the evolutionary and epidemiological dynamics underlying this significant event. GI consists of two clades, GI-a and GI-b, with the latter being associated with displacement of GIII as the dominant JEV genotype throughout Asia in the 1990s. Phylogeographic analysis indicated that GI-a diverged in Thailand or Cambodia and has remained confined to tropical Asia, whereas GI-b diverged in Vietnam and then dispersed northwards to China, where it was subsequently dispersed to Japan, Korea, and Taiwan. Molecular adaptation was detected by more than one method at one site (residue 15), and coevolution was detected at two pairs of sites (residues 89 to 360 and 129 to 141) within the GI E gene protein alignment. Viral multiplication and temperature sensitivity analyses in avian and mosquito cells revealed that the GI-b isolate JE-91 had significantly higher infectivity titers in mosquito cells from 24 to 48 h postinfection than did the GI-a and GIII isolates. If the JE-91 isolate is indeed representative of GI-b, an increased multiplicative ability of GI-b viruses compared to that of GIII viruses early in mosquito infection may have resulted in a shortened extrinsic incubation period that led to an increased number of GI enzootic transmission cycles and the subsequent displacement of GIII. IMPORTANCE Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, represents the most significant etiology of childhood viral neurological infection in Asia. Despite the existence of effective vaccines, JEV is responsible for an estimated 68,000 human cases and a reported 10,000 to 15,000 deaths annually. Phylogenetic studies divided JEV into five geographically and epidemiologically distinct genotypes (GI to GV). GIII has been the source of numerous JEV epidemics throughout history and was the most frequently isolated genotype throughout most of Asia from 1935 until the 1990s. In recent years, GI has displaced GIII as the most frequently isolated virus genotype. To date, the mechanism of this genotype replacement has remained unknown. In this study, we have identified genetic determinants underlying the genotype displacement as it unfolded across Asia. JEV provides a paradigm for other flaviviruses, including West Nile, yellow fever, and dengue viruses, and the critical role of the selective advantages in the mosquito vector.


Science | 2013

Sources of Antimicrobial Resistance

Mark E. J. Woolhouse; Melissa J. Ward

Genomic data help to elucidate the role of food animals in the spread of antimicrobial resistance in humans. [Also see Report by Mather et al.] The relentless rise in levels of antimicrobial resistance is an unfolding global public health crisis (1). Resistance to frontline antimicrobials such as fluoroquinolones, third- and fourth-generation cephalosporins, and carbapenems is a particular concern, as is multidrug resistance. The antimicrobial resistance problem is not confined to human medicine: Comparable quantities of antimicrobials are used in livestock production, and resistance is rife in that setting, too, even on organic farms that restrict drug usage (2). Such observations have led to debate about whether antimicrobial resistance in farm animals is an important source of antimicrobial resistance in humans (3, 4). On page 1514 of this issue, Mather et al. (5) shed light on this important question in the context of Salmonella Typhimurium DT104 in humans and cattle in Scotland.


Journal of Clinical Microbiology | 2015

Utility of Whole-Genome Sequencing of Escherichia coli O157 for Outbreak Detection and Epidemiological Surveillance

Anne Holmes; Lesley Allison; Melissa J. Ward; Timothy J. Dallman; Richard Clark; Angie Fawkes; Lee Murphy; Mary Hanson

ABSTRACT Detailed laboratory characterization of Escherichia coli O157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance of E. coli O157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred five E. coli O157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six “atypical” E. coli O157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance of E. coli O157. A combination of in silico analyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determine stx subtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades of E. coli O157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together, the results show that WGS data can provide higher resolution of the relationships between E. coli O157 isolates than that provided by MLVA. The method has the potential to streamline the laboratory workflow and provide detailed information for the clinical management of patients and public health interventions.

Collaboration


Dive into the Melissa J. Ward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Tatem

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trevor Bedford

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge