Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa Jill Romero-Aleshire is active.

Publication


Featured researches published by Melissa Jill Romero-Aleshire.


Hypertension | 2014

Sex Differences in T-Lymphocyte Tissue Infiltration and Development of Angiotensin II Hypertension

Dennis Pollow; Jennifer L. Uhrlaub; Melissa Jill Romero-Aleshire; Kathryn Sandberg; Janko Nikolich-Zugich; Heddwen L. Brooks; Meredith Hay

There is extensive evidence that activation of the immune system is both necessary and required for the development of angiotensin II (Ang II)–induced hypertension in males. The purpose of this study was to determine whether sex differences exist in the ability of the adaptive immune system to induce Ang II–dependent hypertension and whether central and renal T-cell infiltration during Ang II–induced hypertension is sex dependent. Recombinant activating gene-1 (Rag-1)–/– mice, lacking both T and B cells, were used. Male and female Rag-1–/– mice received adoptive transfer of male CD3+ T cells 3 weeks before 14-day Ang II infusion (490 ng/kg per minute). Blood pressure was monitored via tail cuff. In the absence of T cells, systolic blood pressure responses to Ang II were similar between sexes (&Dgr;22.1 mm Hg males versus &Dgr;18 mm Hg females). After adoptive transfer of male T cells, Ang II significantly increased systolic blood pressure in males (&Dgr;37.7 mm Hg; P<0.05) when compared with females (&Dgr;13.7 mm Hg). Flow cytometric analysis of total T cells and CD4+, CD8+, and regulatory Foxp3+-CD4+ T-cell subsets identified that renal lymphocyte infiltration was significantly increased in males versus females in both control and Ang II–infused animals (P<0.05). Immunohistochemical staining for CD3+-positive T cells in the subfornical organ region of the brain was increased in males when compared with that in females. These results suggest that female Rag-1–/– mice are protected from male T-cell–mediated increases in Ang II–induced hypertension when compared with their male counterparts, and this protection may involve sex differences in the magnitude of T-cell infiltration of the kidney and brain.


Aging Cell | 2015

Lifespan-extending caloric restriction or mTOR inhibition impair adaptive immunity of old mice by distinct mechanisms

Emily L. Goldberg; Melissa Jill Romero-Aleshire; Kristin R. Renkema; Melissa S. Ventevogel; Wade M. Chew; Jennifer L. Uhrlaub; Megan J. Smithey; Kirsten H. Limesand; Gregory D. Sempowski; Heddwen L. Brooks; Janko Nikolich-Žugich

Aging of the world population and a concomitant increase in age‐related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age‐related decline of the immune system, infectious diseases remain among the top 5–10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T‐cell development in the thymus, peripheral T‐cell maintenance, T‐cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Loss of ovarian function in the VCD mouse-model of menopause leads to insulin resistance and a rapid progression into the metabolic syndrome

Melissa Jill Romero-Aleshire; Maggie K. Diamond-Stanic; Alyssa H. Hasty; Patricia B. Hoyer; Heddwen L. Brooks

Factors comprising the metabolic syndrome occur with increased incidence in postmenopausal women. To investigate the effects of ovarian failure on the progression of the metabolic syndrome, female B(6)C(3)F(1) mice were treated with 4-vinylcyclohexene diepoxide (VCD) and fed a high-fat (HF) diet for 16 wk. VCD destroys preantral follicles, causing early ovarian failure and is a well-characterized model for the gradual onset of menopause. After 12 wk on a HF diet, VCD-treated mice had developed an impaired glucose tolerance, whereas cycling controls were unaffected [12 wk AUC HF mice 13,455 +/- 643 vs. HF/VCD 17,378 +/- 1140 mg/dl/min, P < 0.05]. After 16 wk on a HF diet, VCD-treated mice had significantly higher fasting insulin levels (HF 5.4 +/- 1.3 vs. HF/VCD 10.1 +/- 1.4 ng/ml, P < 0.05) and were significantly more insulin resistant (HOMA-IR) than cycling controls on a HF diet (HF 56.2 +/- 16.7 vs. HF/VCD 113.1 +/- 19.6 mg/dl x microU/ml, P < 0.05). All mice on a HF diet gained more weight than mice on a standard diet, and weight gain in HF/VCD mice was significantly increased compared with HF cycling controls. Interestingly, even without a HF diet, progression into VCD-induced menopause caused a significant increase in cholesterol and free fatty acids. Furthermore, in mice fed a standard diet (6% fat), insulin resistance developed 4 mo after VCD-induced ovarian failure. Insulin resistance following ovarian failure (menopause) was prevented by estrogen replacement. Studies here demonstrate that ovarian failure (menopause) accelerates progression into the metabolic syndrome and that estrogen replacement prevents the onset of insulin resistance in VCD-treated mice. Thus, the VCD model of menopause provides a physiologically relevant means of studying how sex hormones influence the progression of the metabolic syndrome.


American Journal of Physiology-renal Physiology | 2013

Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells.

Yang Gao; Melissa Jill Romero-Aleshire; Qi Cai; Theodore J. Price; Heddwen L. Brooks

Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1.


American Journal of Physiology-renal Physiology | 2011

Midkine, a heparin-binding protein, is increased in the diabetic mouse kidney postmenopause

Maggie K. Diamond-Stanic; Melissa Jill Romero-Aleshire; Patricia B Hoyer; Kevin A. Greer; James B. Hoying; Heddwen L. Brooks

Estrogen is thought to protect against the development of chronic kidney disease, and menopause increases the development and severity of diabetic kidney disease. In this study, we used streptozotocin (STZ) to induce diabetes in the 4-vinylcyclohexene diepoxide (VCD)-treated mouse model of menopause. DNA microarrays were used to identify gene expression changes in the diabetic kidney postmenopause. An ANOVA model, CARMA, was used to isolate the menopause effect between two groups of diabetic mice, diabetic menopausal (STZ/VCD) and diabetic cycling (STZ). In this diabetic study, 8,864 genes of the possible 15,600 genes on the array were included in the ANOVA; 99 genes were identified as demonstrating a >1.5-fold up- or downregulation between the STZ/VCD and STZ groups. We randomly selected genes for confirmation by real-time PCR; midkine (Mdk), immediate early response gene 3 (IEX-1), mitogen-inducible gene 6 (Mig6), and ubiquitin-specific protease 2 (USP2) were significantly increased in the kidneys of STZ/VCD compared with STZ mice. Western blot analysis confirmed that Mdk and IEX-1 protein abundance was significantly increased in the kidney cortex of STZ/VCD compared with STZ mice. In a separate study, DNA microarrays and CARMA analysis were used to identify the effect of menopause on the nondiabetic kidney; VCD-treated mice were compared with cycling mice. Of the possible 15,600 genes on the array, 9,142 genes were included in the ANOVA; 20 genes were identified as demonstrating a >1.5-fold up- or downregulation; histidine decarboxylase and vanin 1 were among the genes identified as differentially expressed in the postmenopausal nondiabetic kidney. These data expand our understanding of how hormone status correlates with the development of diabetic kidney disease and identify several target genes for further studies.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

ANG II-induced hypertension in the VCD mouse model of menopause is prevented by estrogen replacement during perimenopause

Dennis Pollow; Melissa Jill Romero-Aleshire; Jessica N Sanchez; John P. Konhilas; Heddwen L. Brooks

Premenopausal females are resistant to the development of hypertension, and this protection is lost after the onset of menopause, resulting in a sharp increase in disease onset and severity. However, it is unknown how a fluctuating ovarian hormone environment during the transition from perimenopause to menopause impacts the onset of hypertension, and whether interventions during perimenopause prevent disease onset after menopause. A gradual transition to menopause was induced by repeated daily injections of 4-vinylcyclohexene diepoxide (VCD). ANG II (800 ng·kg(-1)·min(-1)) was infused into perimenopausal and menopausal female mice for 14 days. A separate cohort of mice received 17β-estradiol replacement during perimenopause. ANG II infusion produced significantly higher mean arterial pressure (MAP) in menopausal vs. cycling females, and 17β-estradiol replacement prevented this increase. In contrast, MAP was not significantly different when ANG II was infused into perimenopausal and cycling females, suggesting that female resistance to ANG II-induced hypertension is intact during perimenopause. ANG II infusion caused a significant glomerular hypertrophy, and hypertrophy was not impacted by hormonal status. Expression levels of aquaporin-2 (AQP2), a collecting duct protein, have been suggested to reflect blood pressure. AQP2 protein expression was significantly downregulated in the renal cortex of the ANG II-infused menopause group, where blood pressure was increased. AQP2 expression levels were restored to control levels with 17β-estradiol replacement. This study indicates that the changing hormonal environment in the VCD model of menopause impacts the severity of ANG II-induced hypertension. These data highlight the utility of the ovary-intact VCD model of menopause as a clinically relevant model to investigate the physiological mechanisms of hypertension that occur in women during the transition into menopause.


Investigative Ophthalmology & Visual Science | 2016

Early Retinal Neuronal Dysfunction in Diabetic Mice: Reduced Light-Evoked Inhibition Increases Rod Pathway Signaling

Johnnie Moore-Dotson; Jamie J. Beckman; Reece Mazade; Mrinalini Hoon; Adam Bernstein; Melissa Jill Romero-Aleshire; Heddwen L. Brooks; Erika D. Eggers

Purpose Recent studies suggest that the neural retinal response to light is compromised in diabetes. Electroretinogram studies suggest that the dim light retinal rod pathway is especially susceptible to diabetic damage. The purpose of this study was to determine whether diabetes alters rod pathway signaling. Methods Diabetes was induced in C57BL/6J mice by three intraperitoneal injections of streptozotocin (STZ; 75 mg/kg), and confirmed by blood glucose levels > 200 mg/dL. Six weeks after the first injection, whole-cell voltage clamp recordings of spontaneous and light-evoked inhibitory postsynaptic currents from rod bipolar cells were made in dark-adapted retinal slices. Light-evoked excitatory currents from rod bipolar and AII amacrine cells, and spontaneous excitatory currents from AII amacrine cells were also measured. Receptor inputs were pharmacologically isolated. Immunohistochemistry was performed on whole mounted retinas. Results Rod bipolar cells had reduced light-evoked inhibitory input from amacrine cells but no change in excitatory input from rod photoreceptors. Reduced light-evoked inhibition, mediated by both GABAA and GABAC receptors, increased rod bipolar cell output onto AII amacrine cells. Spontaneous release of GABA onto rod bipolar cells was increased, which may limit GABA availability for light-evoked release. These physiological changes occurred in the absence of retinal cell loss or changes in GABAA receptor expression levels. Conclusions Our results indicate that early diabetes causes deficits in the rod pathway leading to decreased light-evoked rod bipolar cell inhibition and increased rod pathway output that provide a basis for the development of early diabetic visual deficits.


American Journal of Physiology-renal Physiology | 2018

Renoprotective impact of estrogen receptor α and its splice variants in female mice with type 1 diabetes

Debra L. Irsik; Melissa Jill Romero-Aleshire; Erin M. Chavez; Rachel W. Fallet; Heddwen L. Brooks; Pamela K. Carmines; Pascale H. Lane

Estrogen has been implicated in the regulation of growth and immune function in the kidney, which expresses the full-length estrogen receptor-α (ERα66), its ERα splice variants, and estrogen receptor-β (ERβ). Thus, we hypothesized that these splice variants may inhibit the glomerular enlargement that occurs early in type 1 diabetes (T1D). T1D was induced by streptozotocin (STZ) injection in 8- to 12-wk-old female mice lacking ERα66 (ERα66KO) or all ERα variants (αERKO), and their wild-type (WT) littermates. Basal renal ERα36 protein expression was reduced in the ERα66KO model and was downregulated by T1D in WT mice. T1D did not alter ERα46 or ERβ in WT-STZ; however, ERα46 was decreased modestly in ERα66KO mice. Renal hypertrophy was evident in all diabetic mice. F4/80-positive immunostaining was reduced in ERα66KO compared with WT and αERKO mice but was higher in STZ than in Control mice across all genotypes. Glomerular area was greater in WT and αERKO than in ERα66KO mice, with T1D-induced glomerular enlargement apparent in WT-STZ and αERKO-STZ, but not in ERα66KO-STZ mice. Proteinuria and hyperfiltration were evident in ERα66KO-STZ and αERKO-STZ, but not in WT-STZ mice. These data indicate that ERα splice variants may exert an inhibitory influence on glomerular enlargement and macrophage infiltration during T1D; however, effects of splice variants are masked in the presence of the full-length ERα66, suggesting that ERα66 acts in opposition to its splice variants to influence these parameters. In contrast, hyperfiltration and proteinuria in T1D are attenuated via an ERα66-dependent mechanism that is unaffected by splice variant status.


American Journal of Physiology-renal Physiology | 2007

Hormonal status affects the progression of STZ-induced diabetes and diabetic renal damage in the VCD mouse model of menopause

Maggie Keck; Melissa Jill Romero-Aleshire; Qi Cai; Patricia B. Hoyer; Heddwen L. Brooks


Archive | 2016

progression into the metabolic syndrome menopause leads to insulin resistance and a rapid Loss of ovarian function in the VCD mouse-model of

Heddwen L. Brooks; Melissa Jill Romero-Aleshire; Maggie K. Diamond-Stanic; Alyssa H. Hasty

Collaboration


Dive into the Melissa Jill Romero-Aleshire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Cai

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge