Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa K. Gardner is active.

Publication


Featured researches published by Melissa K. Gardner.


Current Biology | 2004

Stable Kinetochore-Microtubule Attachment Constrains Centromere Positioning in Metaphase

Chad G. Pearson; Elaine Yeh; Melissa K. Gardner; David J. Odde; E. D. Salmon; Kerry Bloom

With a single microtubule attachment, budding-yeast kinetochores provide an excellent system for understanding the coordinated linkage to dynamic microtubule plus ends for chromosome oscillation and positioning. Fluorescent tagging of kinetochore proteins indicates that, on average, all centromeres are clustered, distinctly separated from their sisters, and positioned equidistant from their respective spindle poles during metaphase. However, individual fluorescent chromosome markers near the centromere transiently reassociate with their sisters and oscillate from one spindle half to the other. To reconcile the apparent disparity between the average centromere position and individual centromere proximal markers, we utilized fluorescence recovery after photobleaching to measure stability of the histone-H3 variant Cse4p/CENP-A. Newly synthesized Cse4p replaces old protein during DNA replication. Once assembled, Cse4-GFP is a physically stable component of centromeres during mitosis. This allowed us to follow centromere dynamics within each spindle half. Kinetochores remain stably attached to dynamic microtubules and exhibit a low incidence of switching orientation or position between the spindle halves. Switching of sister chromatid attachment may be contemporaneous with Cse4p exchange and early kinetochore assembly during S phase; this would promote mixing of chromosome attachment to each spindle pole. Once biorientation is attained, centromeres rarely make excursions beyond their proximal half spindle.


Current Biology | 2007

MICROTUBULE ASSEMBLY DYNAMICS AT THE NANOSCALE

Henry T. Schek; Melissa K. Gardner; Jun Cheng; David J. Odde; Alan J. Hunt

BACKGROUND The labile nature of microtubules is critical for establishing cellular morphology and motility, yet the molecular basis of assembly remains unclear. Here we use optical tweezers to track microtubule polymerization against microfabricated barriers, permitting unprecedented spatial resolution. RESULTS We find that microtubules exhibit extensive nanometer-scale variability in growth rate and often undergo shortening excursions, in some cases exceeding five tubulin layers, during periods of overall net growth. This result indicates that the guanosine triphosphate (GTP) cap does not exist as a single layer as previously proposed. We also find that length increments (over 100 ms time intervals, n = 16,762) are small, 0.81 +/- 6.60 nm (mean +/- standard deviation), and very rarely exceed 16 nm (about two dimer lengths), indicating that assembly occurs almost exclusively via single-subunit addition rather than via oligomers as was recently suggested. Finally, the assembly rate depends only weakly on load, with the average growth rate decreasing only 2-fold as the force increases 7-fold from 0.4 pN to 2.8 pN. CONCLUSIONS The data are consistent with a mechanochemical model in which a spatially extended GTP cap allows substantial shortening on the nanoscale, while still preventing complete catastrophe in most cases.


Cell | 2008

Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules

Melissa K. Gardner; David C. Bouck; Leocadia V. Paliulis; Janet B. Meehl; Eileen O'Toole; Julian Haase; Adelheid Soubry; Ajit P. Joglekar; Mark Winey; E. D. Salmon; Kerry Bloom; David J. Odde

During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.


Cell | 2011

Rapid Microtubule Self-Assembly Kinetics

Melissa K. Gardner; Blake D. Charlebois; Imre M. Jánosi; Jonathon Howard; Alan J. Hunt; David J. Odde

Melissa K. Gardner,1,2,3 Blake D. Charlebois,4 Imre M. Jánosi,5 Jonathon Howard,2 Alan J. Hunt,4,* and David J. Odde1,* 1Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA 2Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany 3Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA 4Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA 5Department of Physics of Complex Systems, Loránd Eötvös University, Budapest, Hungary *Correspondence: [email protected] (A.J.H.), [email protected] (D.J.O.) DOI 10.1016/j.cell.2011.06.053Microtubule assembly is vital for many fundamental cellular processes. Current models for microtubule assembly kinetics assume that the subunit dissociation rate from a microtubule tip is independent of free subunit concentration. Total-Internal-Reflection-Fluorescence (TIRF) microscopy experiments and data from a laser tweezers assay that measures in vitro microtubule assembly with nanometer resolution, provides evidence that the subunit dissociation rate from a microtubule tip increases as the free subunit concentration increases. These data are consistent with a two-dimensional model for microtubule assembly, and are explained by a shift in microtubule tip structure from a relatively blunt shape at low free concentrations to relatively tapered at high free concentrations. We find that because both the association and the dissociation rates increase at higher free subunit concentrations, the kinetics of microtubule assembly are an order-of-magnitude higher than currently estimated in the literature.


Cell | 2011

Depolymerizing Kinesins Kip3 and MCAK Shape Cellular Microtubule Architecture by Differential Control of Catastrophe

Melissa K. Gardner; Marija Zanic; Christopher Gell; Volker Bormuth; Jonathon Howard

Microtubules are dynamic filaments whose ends alternate between periods of slow growth and rapid shortening as they explore intracellular space and move organelles. A key question is how regulatory proteins modulate catastrophe, the conversion from growth to shortening. To study this process, we reconstituted microtubule dynamics in the absence and presence of the kinesin-8 Kip3 and the kinesin-13 MCAK. Surprisingly, we found that, even in the absence of the kinesins, the microtubule catastrophe frequency depends on the age of the microtubule, indicating that catastrophe is a multistep process. Kip3 slowed microtubule growth in a length-dependent manner and increased the rate of aging. In contrast, MCAK eliminated the aging process. Thus, both kinesins are catastrophe factors; Kip3 mediates fine control of microtubule length by narrowing the distribution of maximum lengths prior to catastrophe, whereas MCAK promotes rapid restructuring of the microtubule cytoskeleton by making catastrophe a first-order random process.


Current Biology | 2006

Mps1 Phosphorylation of Dam1 Couples Kinetochores to Microtubule Plus Ends at Metaphase

Michelle M. Shimogawa; Beth Graczyk; Melissa K. Gardner; Susan E. Francis; Erin White; Michael Ess; Jeffrey N. Molk; Cristian I. Ruse; Sherry Niessen; John R. Yates; Eric G D Muller; Kerry Bloom; David J. Odde; Trisha N. Davis

BACKGROUND Duplicated chromosomes are equally segregated to daughter cells by a bipolar mitotic spindle during cell division. By metaphase, sister chromatids are coupled to microtubule (MT) plus ends from opposite poles of the bipolar spindle via kinetochores. Here we describe a phosphorylation event that promotes the coupling of kinetochores to microtubule plus ends. RESULTS Dam1 is a kinetochore component that directly binds to microtubules. We identified DAM1-765, a dominant allele of DAM1, in a genetic screen for mutations that increase stress on the spindle pole body (SPB) in Saccharomyces cerevisiae. DAM1-765 contains the single mutation S221F. We show that S221 is one of six Dam1 serines (S13, S49, S217, S218, S221, and S232) phosphorylated by Mps1 in vitro. In cells with single mutations S221F, S218A, or S221A, kinetochores in the metaphase spindle form tight clusters that are closer to the SPBs than in a wild-type cell. Five lines of experimental evidence, including localization of spindle components by fluorescence microscopy, measurement of microtubule dynamics by fluorescence redistribution after photobleaching, and reconstructions of three-dimensional structure by electron tomography, combined with computational modeling of microtubule behavior strongly indicate that, unlike wild-type kinetochores, Dam1-765 kinetochores do not colocalize with an equal number of plus ends. Despite the uncoupling of the kinetochores from the plus ends of MTs, the DAM1-765 cells are viable, complete the cell cycle with the same kinetics as wild-type cells, and biorient their chromosomes as efficiently as wild-type cells. CONCLUSIONS We conclude that phosphorylation of Dam1 residues S218 and S221 by Mps1 is required for efficient coupling of kinetochores to MT plus ends. We find that efficient plus-end coupling is not required for (1) maintenance of chromosome biorientation, (2) maintenance of tension between sister kinetochores, or (3) chromosome segregation.


Journal of Cell Biology | 2008

The microtubule-based motor Kar3 and plus end–binding protein Bim1 provide structural support for the anaphase spindle

Melissa K. Gardner; Julian Haase; Karthikeyan Mythreye; Jeffrey N. Molk; Marybeth Anderson; Ajit P. Joglekar; Eileen O'Toole; Mark Winey; E. D. Salmon; David J. Odde; Kerry Bloom

In budding yeast, the mitotic spindle is comprised of 32 kinetochore microtubules (kMTs) and ∼8 interpolar MTs (ipMTs). Upon anaphase onset, kMTs shorten to the pole, whereas ipMTs increase in length. Overlapping MTs are responsible for the maintenance of spindle integrity during anaphase. To dissect the requirements for anaphase spindle stability, we introduced a conditionally functional dicentric chromosome into yeast. When centromeres from the same sister chromatid attach to opposite poles, anaphase spindle elongation is delayed and a DNA breakage-fusion-bridge cycle ensues that is dependent on DNA repair proteins. We find that cell survival after dicentric chromosome activation requires the MT-binding proteins Kar3p, Bim1p, and Ase1p. In their absence, anaphase spindles are prone to collapse and buckle in the presence of a dicentric chromosome. Our analysis reveals the importance of Bim1p in maintaining a stable ipMT overlap zone by promoting polymerization of ipMTs during anaphase, whereas Kar3p contributes to spindle stability by cross-linking spindle MTs.


Current Opinion in Cell Biology | 2008

Microtubule assembly dynamics: new insights at the nanoscale

Melissa K. Gardner; Alan J. Hunt; Holly V. Goodson; David J. Odde

Although the dynamic self-assembly behavior of microtubule ends has been well characterized at the spatial resolution of light microscopy (~200 nm), the single-molecule events that lead to these dynamics are less clear. Recently, a number of in vitro studies used novel approaches combining laser tweezers, microfabricated chambers, and high-resolution tracking of microtubule-bound beads to characterize mechanochemical aspects of MT dynamics at nanometer scale resolution. In addition, computational modeling is providing a framework for integrating these experimental results into physically plausible models of molecular scale microtubule dynamics. These nanoscale studies are providing new fundamental insights about microtubule assembly, and will be important for advancing our understanding of how microtubule dynamic instability is regulated in vivo via microtubule-associated proteins, therapeutic agents, and mechanical forces.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Microtubule binding distinguishes dystrophin from utrophin

Joseph J. Belanto; Tara L. Mader; Michael D. Eckhoff; Dana M. Strandjord; Glen B. Banks; Melissa K. Gardner; Dawn A. Lowe; James M. Ervasti

Significance Our in vitro analyses reveal that dystrophin, the protein absent in Duchenne muscular dystrophy patients, binds microtubules with high affinity and pauses microtubule polymerization, whereas utrophin, the autosomal homologue of dystrophin thought to mirror many known functions of dystrophin, has no activity in either assay. We also report that transgenic utrophin overexpression does not correct subsarcolemmal microtubule lattice disorganization, physical inactivity after mild exercise, or loss of torque production after in vivo eccentric contraction in dystrophin-deficient skeletal muscle. Finally, our data demonstrate that microtubule lattice disorganization contributes to the greater eccentric contraction-induced injury experienced by dystrophin-deficient skeletal muscle, demonstrating a phenotype of dystrophin deficiency that utrophin-based therapy may not be able to correct. Dystrophin and utrophin are highly similar proteins that both link cortical actin filaments with a complex of sarcolemmal glycoproteins, yet localize to different subcellular domains within normal muscle cells. In mdx mice and Duchenne muscular dystrophy patients, dystrophin is lacking and utrophin is consequently up-regulated and redistributed to locations normally occupied by dystrophin. Transgenic overexpression of utrophin has been shown to significantly improve aspects of the disease phenotype in the mdx mouse; therefore, utrophin up-regulation is under intense investigation as a potential therapy for Duchenne muscular dystrophy. Here we biochemically compared the previously documented microtubule binding activity of dystrophin with utrophin and analyzed several transgenic mouse models to identify phenotypes of the mdx mouse that remain despite transgenic utrophin overexpression. Our in vitro analyses revealed that dystrophin binds microtubules with high affinity and pauses microtubule polymerization, whereas utrophin has no activity in either assay. We also found that transgenic utrophin overexpression does not correct subsarcolemmal microtubule lattice disorganization, loss of torque production after in vivo eccentric contractions, or physical inactivity after mild exercise. Finally, our data suggest that exercise-induced inactivity correlates with loss of sarcolemmal neuronal NOS localization in mdx muscle, whereas loss of in vivo torque production after eccentric contraction-induced injury is associated with microtubule lattice disorganization.


Trends in Cell Biology | 2008

Kinesin-8 molecular motors: putting the brakes on chromosome oscillations

Melissa K. Gardner; David J. Odde; Kerry Bloom

Recent studies suggest that the human Kinesin-8 molecular motor Kif18A has a role in chromosome congression. Specifically, these studies find that Kif18A promotes chromosome congression by attenuating chromosome oscillation magnitudes. Together with recent modeling work, in vitro studies, and the analysis of in vivo yeast data, these reports reveal how Kinesin-8 molecular motors might control chromosome oscillation amplitudes by spatially regulating the dynamic instability of microtubule plus-ends within the mitotic spindle.

Collaboration


Dive into the Melissa K. Gardner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerry Bloom

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. D. Salmon

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad G. Pearson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian L. Sprague

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge