Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa M. McClure is active.

Publication


Featured researches published by Melissa M. McClure.


Stroke | 2007

Maturation-Dependent Vulnerability of Perinatal White Matter in Premature Birth

Stephen A. Back; Art Riddle; Melissa M. McClure

Survivors of premature birth have a predilection for perinatal brain injury, especially to periventricular cerebral white matter. Periventricular white matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia) and diffuse myelination disturbances. Recent neuroimaging studies support that the incidence of periventricular leukomalacia is declining, whereas focal or diffuse noncystic injury is emerging as the predominant lesion. In a significant number of infants, PWMI appears to be initiated by perturbations in cerebral blood flow that reflect anatomic and physiological immaturity of the vasculature. Ischemic cerebral white matter is susceptible to pronounced free radical–mediated injury that particularly targets immature stages of the oligodendrocyte lineage. Emerging experimental data supports that pronounced ischemia in the periventricular white matter is necessary but not sufficient to generate the initial injury that leads to PWMI. The developmental predilection for PWMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible oligodendrocyte progenitors. Injury to oligodendrocyte progenitors may contribute to the pathogenesis of PWMI by disrupting the maturation of myelin-forming oligodendrocytes. There has been substantial recent progress in the understanding of the cellular and molecular pathogenesis of PWMI. The oligodendrocyte progenitor is a key target for preventive strategies to reduce ischemic cerebral white matter injury in premature infants.


Annals of Neurology | 2008

Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury

Kristen N. Segovia; Melissa M. McClure; Matthew Moravec; Ning Ling Luo; Ying Wan; Xi Gong; Art Riddle; Andrew Craig; Jaime Struve; Larry S. Sherman; Stephen A. Back

Abnormal myelination is a major pathological sequela of chronic periventricular white matter injury in survivors of premature birth. We tested the hypothesis that myelination failure in chronic hypoxia‐ischemia‐induced periventricular white matter injury is related to persistent depletion of the oligodendrocyte (OL) precursor pool required to generate mature myelinating OLs.


Brain Research Bulletin | 2007

Developmental Disruptions and Behavioral Impairments in Rats Following In Utero RNAi of Dyx1c1

Steven W. Threlkeld; Melissa M. McClure; Jilin Bai; Yu Wang; Joe J. LoTurco; Glenn D. Rosen; R. Holly Fitch

Developmental malformations of cortex have been shown to co-occur with language, learning, and other cognitive deficits in humans. Rodent models have repeatedly shown that animals with such developmental malformations have deficits related to auditory processing and learning. More specifically, freeze-lesion induced microgyria as well as molecular layer ectopias have been found to impair rapid auditory processing ability in rats and mice. In humans, deficits in rapid auditory processing appear to relate to later impairments of language. Recently, genetic variants of four different genes involved in early brain development have been proposed to associate with an elevated incidence of developmental dyslexia in humans. Three of these, DYX1C1, DCDC2, and KIAA0319, have been shown by in utero RNAi to play a role in neuronal migration in developing neocortex. The present study assessed the effects of in utero RNAi of Dyx1c1 on auditory processing and spatial learning in rats. Results indicate that RNAi of Dyx1c1 is associated with cortical heterotopia and is suggestive of an overall processing deficit of complex auditory stimuli in both juvenile and adult periods (p=.051, one-tail). In contrast, adult data alone reveal a significant processing impairment among RNAi treated subjects compared to shams, indicating an inability for RNAi treated subjects to improve detection of complex auditory stimuli over time (p=.022, one-tail). Further, a subset of RNAi treated rats exhibited hippocampal heterotopia centered in CA1 (in addition to cortical malformations). Malformations of hippocampus were associated with robust spatial learning impairment in this sub-group (p<.01, two-tail). In conclusion, in utero RNAi of Dyx1c1 results in heterogeneous malformations that correspond to distinct behavioral impairments in auditory processing, and spatial learning.


Brain Research Bulletin | 2008

Use of a modified prepulse inhibition paradigm to assess complex auditory discrimination in rodents.

R. Holly Fitch; Steven W. Threlkeld; Melissa M. McClure; Ann M. Peiffer

Prepulse inhibition (PPI; also termed startle reduction or reflex modification, see Ref. [H.S. Hoffman, J.R. Ison, Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input, Psychol. Rev. 87 (1980) 175-189]) provides an efficient and accurate method to assess both simple and complex acoustic discrimination in rodents [J.R. Ison, G.R. Hammond, Modification of the startle reflex in the rat by changes in the auditory and visual environments, J. Comp. Physiol. Psychol. 75 (1971) 435-452]. Assessment of acoustic processing using PPI is less time consuming than operant conditioning paradigms, allows for the testing of many subjects simultaneously, and largely eliminates confounds due to motivation and attention [M. Clark, G. Rosen, P. Tallal, R.H. Fitch, Impaired processing of complex auditory stimuli in rats with induced cerebrocortical microgyria, J. Cog. Neurosci. 12 (2000) 828-839]. Moreover, PPI procedures allow for data acquisition from the first day of testing, and can be used on rats as young as P14-15 [J.T. Friedman, A. Peiffer, M. Clark, A. Benasich, R.H. Fitch, Age and experience related improvements in gap detection in the rat, Dev. Brain Res. 152 (2004) 83-91; M. McClure, S. Threlkeld, G. Rosen, R.H. Fitch, Rapid auditory processing and learning deficits in rats with P1 versus P7 neonatal hypoxic-ischemic injury, Behav. Brain Res. 172 (2006) 114-121; S.W. Threlkeld, M.M. McClure, G.D. Rosen, R.H. Fitch, Developmental timeframes for the induction of microgyria and rapid auditory processing deficits in the rat, Brain Res. 1109 (2006) 22-31]. For these and additional reasons, the PPI paradigm has more recently been adapted to the assessment of complex acoustic discrimination (tone sequences and FM sweeps), and applied to the study of normally developing as well as neuropathologically affected rodent populations. The purpose of the current review is to provide a background on the PPI paradigm, and to summarize what has been learned more recently using modified versions of PPI with rodent models.


Journal of Cerebral Blood Flow and Metabolism | 2008

Cerebral blood flow heterogeneity in preterm sheep: lack of physiologic support for vascular boundary zones in fetal cerebral white matter

Melissa M. McClure; Art Riddle; Mario Manese; Ning Ling Luo; Dawn A. Rorvik; Katherine A. Kelly; Clyde H. Barlow; Jeffrey J. Kelly; Kevin Vinecore; Colin T Roberts; A. Roger Hohimer; Stephen A. Back

Periventricular white matter (PVWM) injury is the leading cause of neurologic disability in survivors of prematurity. To address the role of ischemia in PVWM and cerebral cortical injury, we hypothesized that immaturity of spatially distal vascular ‘end zones’ or ‘border zones’ predisposes PVWM to greater decreases in cerebral blood flow (CBF) than more proximal structures. We quantified regional CBF with fluorescently labeled microspheres in 0.65 gestation fetal sheep in histopathologically defined three-dimensional regions by post hoc digital dissection and coregistration algorithms. Basal flow in PVWM was significantly lower than in gyral white matter and cortex, but was equivalent in superficial, middle, and deep PVWM. Absolute and relative CBF (expressed as percentage of basal) did not differ significantly during ischemia or reperfusion between PVWM, gyral white matter, or cortex. Moreover, CBF during ischemia-reperfusion was equivalent in three adjacent PVWM levels and was not consistent with the magnitude of severity of PVWM injury, defined by TUNEL (terminal deoxynucleotidyltransferase-mediated dUPT nick end labeling) staining. However, the magnitude of ischemia was predicted by the severity of discrete cortical lesions. Hence, unlike cerebral cortex, unique CBF disturbances did not account for the distribution of PVWM injury. Previously defined cellular maturational factors, thus, appear to have a greater influence on PVWM vulnerability to ischemic injury than the presence of immature vascular boundary zones.


Journal of Cerebral Blood Flow and Metabolism | 2010

Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia

Joshua R. Buser; Kristen N. Segovia; Justin Dean; Kerst Nelson; Douglas J. Beardsley; Xi Gong; Ning Ling Luo; Jennifer Ren; Ying Wan; Art Riddle; Melissa M. McClure; Xinhai Ji; Matthew Derrick; A. Roger Hohimer; Stephen A. Back; Sidharthas Tan

Emerging evidence supports that premature infants are susceptible to both cerebral white and gray matter injury. In a fetal rabbit model of placental insufficiency, preterm rabbits at embryonic day 22 (E22) exhibited histologic evidence of gray matter injury but minimal white matter injury after global hypoxia-ischemia (H-I). We hypothesized that the dissociation between susceptibility to gray and white matter injury at E22 was related to the timing of appearance of late oligodendrocyte progenitors (preOLs) that are particularly vulnerable in preterm human white matter lesions. During normal rabbit oligodendrocyte (OL) lineage progression, early OL progenitors predominated at E22. PreOL density increased between E24 and E25 in major forebrain white matter tracts. After H-I at E22 and E25, we observed a similar magnitude of cerebral H-I, assessed by cortical microvascular blood flow, and gray matter injury, assessed by caspase activation. However, the increased preOL density at E25 was accompanied by a significant increase in acute white matter injury after H-I that coincided with enhanced preOL degeneration. At E29, significant white matter atrophy developed after H-I at E25 but not E22. Thus, the timing of appearance of preOLs coincided with onset of a developmental window of enhanced white but not gray matter susceptibility to H-I.


Brain Research | 2007

Auditory processing and learning/memory following erythropoietin administration in neonatally hypoxic–ischemic injured rats

Melissa M. McClure; Steven W. Threlkeld; R. Holly Fitch

BACKGROUND Hypoxia-ischemia (HI) is a common injury arising from prematurity/complications at birth and is associated with later language, auditory, and learning impairments. OBJECTIVE To investigate the efficacy of two doses (300 or 1000 U/kg) of Erythropoietin (Epo) in protecting against neuropathological and behavioral impairments associated with HI injury in rats. METHODS HI injury (right carotid artery cauterization and 120 min of 8% O(2)) was induced on postnatal day 7 (P7) and Epo or saline was administered i.p. immediately following the procedure. Auditory processing and learning/memory were assessed throughout development. RESULTS Both doses of Epo provided behavioral protection following HI injury. Rats given 300 or 1000 U/kg of Epo performed significantly better than HI animals on a short duration complex auditory processing procedure, on a spatial Morris water maze assessing spatial learning/reference memory, and a non-spatial water maze assessing associative learning/reference memory. CONCLUSIONS Given Epos extant clinical use (FDA approved for pediatric patients with anemia secondary to prematurity), the current results add to a growing body of literature supporting the use of Epo as a potential protective agent for neurological and behavioral impairments following early HI injury in infants.


International Journal of Developmental Neuroscience | 2005

Auditory processing deficits in rats with neonatal hypoxic-ischemic injury.

Melissa M. McClure; Ann M. Peiffer; Glenn D. Rosen; R. Holly Fitch

Hypoxia‐ischemia (HI) refers to reduced blood oxygenation and/or a diminished amount of blood perfusing the brain, and is associated with premature birth/very low birth weight (VLBW). HI represents a common cause of injury to the perinatal brain. Indeed, a significant number of premature/VLBW infants go on to demonstrate cognitive/behavioral deficits, with particularly high incidence of disruptions in language development. Auditory processing deficits, in turn, have been suggested to play a causal role in the development of language impairments. Specifically, the inability to identify fast elements in speech is purported to exert cascading detrimental effects on phonological discrimination, processing, and identification. Based on this convergent evidence, the current studies address auditory processing evaluation in a rodent model of HI injury induced on postnatal days 1, 7, or 10 (which in turn is well accepted as modeling HI‐related injury to the perinatal human). Induced injuries were followed by a battery of auditory testing, and a spatial maze assessment, performed both during juvenile and adult periods. Results indicate that rats suffering from these early HI insults performed significantly worse than shams on tasks requiring rapid auditory processing, and on a test of spatial learning (Morris water maze (MWM)), although these effects were not seen on simpler versions of auditory tasks or on a water escape assessment (thus ruling out hearing/motor impairments). Correlations were found between performance on rapid auditory and spatial behavioral tasks and neuroanatomical measures for HI animals such as: the volume of the hippocampus, cerebral cortex, ventricles, and/or the area of the corpus callosum. Cumulative findings suggest that perinatal HI injury in the rat may lead to neurodevelopmental damage associated, in turn, with auditory processing and/or learning and memory impairments. As such, the current model may have critical implications for the study of neurophysiological underpinnings of cognitive deficits in premature/VLBW infants.


Brain Research | 2006

The effects of erythropoietin on auditory processing following neonatal hypoxic-ischemic injury

Melissa M. McClure; Steven W. Threlkeld; R. Holly Fitch

Neonatal hypoxia-ischemia (HI) is a common cause of brain damage and subsequent behavioral deficits in premature/term infants. Rapid auditory processing deficits have been suggested to play a role in later language impairments in this population. We have previously shown auditory deficits in rats with neonatal HI injury and now report novel effects of behavioral sparing and neuroprotection following treatment with a low dose of Erythropoietin using this HI injury model.


Brain Research | 2006

Developmental timeframes for induction of microgyria and rapid auditory processing deficits in the rat

Steven W. Threlkeld; Melissa M. McClure; Glenn D. Rosen; R. Holly Fitch

Induction of a focal freeze lesion to the skullcap of a 1-day-old rat pup leads to the formation of microgyria similar to those identified postmortem in human dyslexics. Rats with microgyria exhibit rapid auditory processing deficits similar to those seen in language-impaired (LI) children, and infants at risk for LI and these effects are particularly marked in juvenile as compared to adult subjects. In the current study, a startle response paradigm was used to investigate gap detection in juvenile and adult rats that received bilateral freezing lesions or sham surgery on postnatal day (P) 1, 3 or 5. Microgyria were confirmed in P1 and 3 lesion rats, but not in the P5 lesion group. We found a significant reduction in brain weight and neocortical volume in P1 and 3 lesioned brains relative to shams. Juvenile (P27-39) behavioral data indicated significant rapid auditory processing deficits in all three lesion groups as compared to sham subjects, while adult (P60+) data revealed a persistent disparity only between P1-lesioned rats and shams. Combined results suggest that generalized pathology affecting neocortical development is responsible for the presence of rapid auditory processing deficits, rather than factors specific to the formation of microgyria per se. Finally, results show that the window for the induction of rapid auditory processing deficits through disruption of neurodevelopment appears to extend beyond the endpoint for cortical neuronal migration, although, the persistent deficits exhibited by P1 lesion subjects suggest a secondary neurodevelopmental window at the time of cortical neuromigration representing a peak period of vulnerability.

Collaboration


Dive into the Melissa M. McClure's collaboration.

Top Co-Authors

Avatar

R. Holly Fitch

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn D. Rosen

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge